
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022. 1

Vision-Only Robot Navigation in a Neural
Radiance World

Michal Adamkiewicz,*1 Timothy Chen,*2 Adam Caccavale,3 Rachel Gardner,1 Preston Culbertson,3

Jeannette Bohg,1 Mac Schwager2

Abstract—Neural Radiance Fields (NeRFs) have recently
emerged as a powerful paradigm for the representation of natu-
ral, complex 3D scenes. NeRFs represent continuous volumetric
density and RGB values in a neural network, and generate
photo-realistic images from unseen camera viewpoints through
ray tracing. We propose an algorithm for navigating a robot
through a 3D environment represented as a NeRF using only an
onboard RGB camera for localization. We assume the NeRF for
the scene has been pre-trained offline, and the robot’s objective
is to navigate through unoccupied space in the NeRF to reach
a goal pose. We introduce a trajectory optimization algorithm
that avoids collisions with high-density regions in the NeRF
based on a discrete time version of differential flatness that
is amenable to constraining the robot’s full pose and control
inputs. We also introduce an optimization based filtering method
to estimate 6DoF pose and velocities for the robot in the NeRF
given only an onboard RGB camera. We combine the trajectory
planner with the pose filter in an online replanning loop to give
a vision-based robot navigation pipeline. We present simulation
results with a quadrotor robot navigating through a jungle gym
environment, the inside of a church, and Stonehenge using only
an RGB camera. We also demonstrate an omnidirectional ground
robot navigating through the church, requiring it to reorient to
fit through a narrow gap. Videos of this work can be found at
mikh3x4.github.io/nerf-navigation/.

Index Terms—Collision Avoidance, Localization, Motion and
Path Planning, Vision-Based Navigation, Neural Radiance Fields

I. INTRODUCTION

PLANNING and executing a trajectory with onboard sen-
sors is a fundamental building block of many robotic

applications, from manipulation to autonomous driving or
drone flight. Robot navigation methods depend on properties
of the underlying environment representation, whether it is
a voxel grid, a point cloud, a mesh model, or a Signed
Distance Field (SDF). Recently there has been an explosion

Manuscript received: September, 9, 2021; Revised December, 8, 2021;
Accepted January, 20, 2022.

This paper was recommended for publication by Editor Eric Marchand upon
evaluation of the Associate Editor and Reviewers’ comments.

This work was supported in part by NSF NRI grant 1830402, ONR grant
N00014-18-1-2830, Siemens and the Stanford Data Science Initiative. P.
Culbertson is supported by NASA Space Technology Research Fellowship
NSSC18K1180.

*These authors contributed equally.
1M. Adamkiewicz, R. Gardner and J. Bohg are with the Department

of Computer Science, Stanford University, Stanford, CA, 94305, USA
{mikadam, rachel0, bohg}@cs.stanford.edu

2T. Chen and M. Schwager are with the Department of Aeronautics and
Astronautics, Stanford University, Stanford, CA 94305, USA, {chengine,
schwager}@stanford.edu

3 A. Caccavale and P. Culbertson are with the Department of Mechanical
Engineering, Stanford University, Stanford, CA 94305, USA, {awc11,
pculbertson}@stanford.edu

Digital Object Identifier (DOI): see top of this page.

Fig. 1. A drone navigating through the interior space of a church using
a monocular camera. The environment is modeled as a Neural Radiance
Field (NeRF), a deep-learned geometry representation. The trajectory, which
is optimized to minimize a NeRF-based collision metric, can be continually
replanned as the drone updates its state estimate based on captured images.

of interest in a deep-learned geometric representation called
Neural Radiance Fields (NeRFs) due to their ability to com-
pactly encode detailed 3D geometry and color [1]. NeRFs take
a collection of camera images and train a neural network
to give a function relating each 3D point in space with a
density and a vector of RGB values (called a “radiance”).
This representation can then generate synthetic photo-realistic
images through a differentiable ray tracing algorithm. In this
paper, we propose a navigation pipeline for a robot given a
pre-trained NeRF of its environment. We use the density of the
NeRF to plan dynamically feasible, collision-free trajectories
for a differentially flat robot model. We also build a filter to
estimate the dynamic state of the robot given an onboard RGB
image, using the image synthesis capabilities of the NeRF.

We combine the trajectory planner and the filter in a
receding horizon loop to provide a full navigation pipeline
for a robot to dynamically maneuver through an environment
using only an RGB camera for feedback. While some existing
vision-only navigation systems [2] have seen recent success
with end-to-end approaches, others such as [3] have advocated
for a modularization of learned perception and control and
achieved impressive results. While their perception system
aims to generalize over variations of drone race tracks it re-
quires very specific training data and labels. We take a similar
approach, and focus on NeRFs as a geometric environment
representation that enables any robot, e.g. drones or ground
robots, to navigate through it.

https://mikh3x4.github.io/nerf-navigation/

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022.

NeRFs present a range of potential advantages as an envi-
ronment representation for robots. Unlike voxel models, point
clouds, or mesh models, they are trained directly on dense pho-
tographic images without needing precise feature extraction,
matching, and alignment [4], [5]. They inherently represent the
geometry as a continuous density field, and so they are well-
suited to robot motion planning and trajectory optimization
using gradient methods, or used with differentiable simulators.
They can also produce photo-realistic synthetic images, giving
a mechanism for a robot to “hallucinate” what it would
expect to see if it were to take different actions. Additionally,
NeRFs are able to store geometry efficiently in memory as
neural network weights rather than as dense point clouds or
voxel grids, making them ideal for use in memory-constrained
systems like robots.

Extensions of NeRFs have been developed to handle trans-
parent objects [6], segment and recompose objects in a scene
[7], [8], [9], and render moving and deformable objects [10],
including humans [10] and human faces [11]. Variants of
NeRFs can also incorporate a prior over objects or scenes,
in order to quickly adapt to new environments with a handful
of images [12], [13]. While the standard NeRF training and
image rendering pipeline is slow, recent developments have
accelerated image synthesis from a NeRF to 200 frames per
second on a GPU [14], fast enough for use in a real-time
robot control loop. We envision a future where all these
improvements could be leveraged to create a fully NeRF
based environment representation that combines complex ge-
ometry, semantic understanding, and real-time performance.
However, for robots to harness the advantages of the NeRF
representation for navigation, a trajectory planner and pose
filter designed to work specifically with the NeRF machinery
are needed.

We address this need in this paper by proposing:
• a new trajectory planning method, based on differential

flatness, that plans full, dynamically feasible trajectories
to avoid collisions with a NeRF environment,

• an optimization-based filter to obtain a posterior estimate
of the full dynamic state, balancing a dynamics prediction
loss and a NeRF-based photometric loss, and

• an online replanning controller that combines both of the
above algorithms in feedback to robustly navigate a robot
through its environment using a NeRF model.

We demonstrate results in a variety of high fidelity simula-
tion environments, and perform ablation studies to showcase
the advantages provided by each part of our navigation frame-
work. We run our navigation pipeline with custom-trained
NeRF models of a playground, a church, and Stonehenge.
We then evaluate the performance of our trajectory planner
and pose estimator on the underlying ground truth mesh
models, not the trained NeRF models, thereby demonstrating
robustness to model mismatch between the real-world scene
and the trained NeRF.

II. RELATED WORK

A. Neural implicit representations
Neural implicit representations use a neural network to repre-
sent the geometry (and sometimes the color and texture) of a
complex 3D scene. Generally, neural implicit representations

take a labeled data set and learn a function of the form
fθ(p) = σ, where f is a neural network parameterized by
the weights θ, p is a low-dimensional query point such as an
(x, y, z) coordinate, and σ is some (usually scalar) quantity of
interest. Aside from NeRFs, there are several other approaches
to implicit representations including learned SDFs [15], [16],
[17] and Occupancy Networks [18].

However, there currently exists little work studying how to
leverage NeRFs for applications beyond novel view synthesis.
Recent work [4] has treated the problem of mapping and online
NeRF construction from visual data; the authors demonstrate
competitive accuracy with traditional SLAM pipelines, and
realtime performance. This work’s state estimator builds on
[19], which presents a method for single-image camera pose
estimation using a pre-trained NeRF representation of the envi-
ronment. The method we present here for state estimation also
uses maximum likelihood estimation (MLE), but we instead
treat the problem as recursive Bayesian estimation, which
incorporates system dynamics and must propagate uncertainty
between timesteps.

B. Trajectory optimization

Optimal control remains a fundamental tool in robotic motion
planning. Of particular interest is the problem of trajectory
optimization [20], which seeks a system trajectory x(t) and
open-loop inputs u(t) that optimize a control objective, sub-
ject to state and input constraints. While there exists a vast
literature on trajectory optimization for robot motion planning
[21], our discussion here will focus specifically on collision
avoidance in trajectory optimization, which remains unstudied
for environments represented as NeRFs.

One approach to model an environment is as an SDF,
which represents obstacles as the zero-level set of a nonlinear
function d(x), which takes negative values inside the obstacle,
positive values outside the obstacle, and has magnitude equal
to the distance between x and the obstacle boundary. Collision
avoidance is typically imposed as a constraint in the trajectory
optimization, requiring the SDF for all obstacles to be non-
negative at all points on the robot body along the trajectory.
This formalism has received particular interest as a map
representation following the success of KinectFusion [22],
which constructs truncated SDFs using RGB-D data. Works
such as [23] and [24] present methods for incrementally
constructing SDF-like map representations and using them for
online motion planning.

Perhaps closest to this work’s trajectory optimizer is
CHOMP [25], [26], a family of gradient-based methods which
optimizes a finite sequence of poses, with an objective which
encourages the trajectory to be smooth and to avoid collision.
Specifically, CHOMP represents obstacle geometry by pre-
computing each obstacle’s SDF on a finite grid, and approxi-
mates SDF gradients using finite differences or interpolation.
In [27], the authors present a similar gradient-based method
which optimizes quadrotor position trajectories to minimize
a perception-aware collision metric based on an SDF-like
map. In contrast, the NeRF geometry representation used
here is continuous in itself, and of arbitrary resolution, with
continuous gradients that can be efficiently computed using
automatic differentiation. Further, our method generates tra-

ADAMKIEWICZ et al.: NERF-NAV 3

jectories that are constrained to be dynamically feasible rather
than imposing the system dynamics via a cost.

III. PROBLEM FORMULATION

This paper proposes a method for navigating a robot through
an environment represented by a NeRF. A NeRF (N :
R3 × R2 7→ R3 × R+) maps a 3D location p = (x, y, z)
and view direction (θ, φ) to an emitted color c = (r, g, b)
and scalar density ρ. For notational convenience, we define
ρ(p) as the density output of the NeRF evaluated at position
p (note ρ depends only on position). Similarly, we define
Ci : SE(3) 7→ R3 as the expected color of pixel i when
rendering the NeRF from the camera pose T ∈ SE(3), where
SE denotes the special Euclidean group.

In this paper, we consider the problem of a mobile robot,
equipped only with a monocular camera, which seeks to
navigate an environment. Specifically, the robot seeks to plan
and track a collision-free path from its initial state x0 to a
goal state xf . The robot has access to a NeRF representation
of the environment which it can use for both planning (i.e., for
evaluating the probability of collision for a given trajectory)
and localization.

We approximate the robot body using a finite collection
of points B at which collision is checked. Typically this will
be a 3d grid of points representing the robot’s bounding box,
however it can also be an arbitrarily complex model. However,
it is not obvious how the NeRF density at a point relates to
its occupancy. Specifically, the NeRF density represents the
differential probability of a given spatial point stopping a ray
of light [1]. We assume the probability of terminating a light
ray is a strong proxy for the probability of terminating a mass
particle. Thus, the collision probability at time t is given by

pcoll
t = P

(⋃
bt∈B

bt ∈ Xcoll

)
≤
∑

bt∈B

ρ(bt) s(bt), (1)

where Xcoll denotes the collision set, s(bt) is the distance
traveled by a body-fixed point b in timestep t, and the bound
follows from Boole’s inequality. In this work, we include
the collision probability as a cost to be minimized during
trajectory optimization; an alternative approach would be to
impose a chance constraint on the optimization, which would
require more sophisticated optimization techniques.

Given a Gaussian estimate of its current state, N(µt,Σt),
the robot plans a series of waypoints that avoid regions of high
density in the NeRF. After taking a control action, the robot
receives an image of the environment, and updates its belief
about its current state. Finally, the robot replans the trajectory
using the latest estimate as the first state.

IV. TRAJECTORY PLANNING IN A NERF
This paper addresses the unique challenges that prevent com-
mon trajectory planning methods from working with NeRF
environment representations. Querying a NeRF at a point
in space gives a density, not an absolute occupancy, which
prevents the use of hard constraints and instead suggests a
method that seeks to minimize the integrated density over the
volume of the robot.

Fig. 2. Block diagram of the proposed pipeline. Our method consists of a
trajectory optimizer and state estimator which use a NeRF representation of
the environment for planning and localization. At each timestep, the planner
optimizes a trajectory from the current mean state estimate which minimizes a
NeRF-based collision metric. The robot then applies the first control action of
this trajectory, and receives a noisy image from its onboard camera. Finally,
the state estimator, using the NeRF as a nonlinear measurement model, uses
this image to generate a posterior belief over the new state.

A. Differential flatness

To speed up planning, our system leverages “differential
flatness,” a particular property of some dynamical systems
which allows their inputs and states to be represented using a
(smaller) set of “flat outputs,” and their derivatives. Notably,
quadrotors are known to be differentially flat, with their
position and yaw angle as flat outputs [28].

Traditional planning pipelines for differentially flat systems
[29], [30] seek polynomial trajectories for the flat outputs
which minimize an objective functional (such as snap or jerk)
subject to waypoint constraints. This problem can be expressed
as a quadratic program, which can be solved efficiently.
Collision avoidance can also be included in this formulation,
but in order for the problem to remain convex, the designer
must hard-code decisions about how obstacles will be passed.

Our approach differs from the traditional pipeline since
we do not describe the obstacles in closed form (e.g., as
polytopes), but instead represent them implicitly using the
NeRF density. Additionally, while prior methods only optimize
the trajectory between static, hand-designed waypoints, our
method uses a denser set of waypoints whose location can be
optimized directly. Because our trajectory optimization is fun-
damentally nonconvex, we instead perform our optimization
using first-order methods (in particular, the Adam optimizer)
with gradients computed efficiently using automatic differen-
tiation. Our decision variables thus are a set of flat output
waypoints that we optimize to minimize a combined objective
of collision probability and control effort. One advantage of
our approach is that the cost can be an arbitrary differentiable
functional of the trajectory or robot state; further, our planned
trajectory can be naturally combined with differential flatness-
based feedback controllers for low-level tracking. Note that
while this paper uses quadrotors as an example, this property
is known to hold for numerous other vehicle types, such as
omnidirectional or differential drive ground robots.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022.

(a) (b)

Fig. 3. (a) Overhead view showing the planned trajectory as the optimization
progresses on a toy example. The initial trajectory (red) goes straight through
the high density regions of the NeRF (black area). The blue is an intermediate
trajectory which clips the corner. The final trajectory (green) avoids the
obstacle. (b) Visualization of how the force balance on the quadrotor leads to
a differential flatness formulation

B. Optimization formulation
The trajectory optimizer seeks a set of flat output waypoints
W = {σ0, . . . ,σh} that minimizes multi-objective cost given
by

J =

h∑
τ=0

collision penalty︷ ︸︸ ︷∑
bi∈B

ρ
(
Rτbi + p(στ)

)
s(bi) +

control penalty︷ ︸︸ ︷
uTτ Γuτ (2)

where p(στ) is the position component of a differentially
flat state στ , Rτ is the rotation matrix from the robot body
frame to the world frame, s(·) is a function that returns the
distance traveled by the point in the robot’s point cloud, and
Γ is the positive definite matrix of of weights penalizing
control effort. The first objective seeks to minimize the upper
bound on collision probability defined in (1), and the second
seeks to minimize control effort. Note that Rτ , s(·), and uτ
are derived from the surrounding waypoints using the robot’s
dynamics, and therefore are functions of the decision variables
{σ1, . . .σh}.

C. Initialization
Our method is initialized by calculating a series of preliminary
waypoint poses between the current pose and goal pose via
a heuristic, such as a straight line or A∗ on a coarse grid
overlaid on the scene. We optimize these initial guesses via
gradient decent to balance multiple objectives such as avoiding
collisions, and minimizing control effort. Fig. 3(a) shows a
trajectory moving towards areas of low NeRF density as it its
optimized from an initial straight line.

V. VISION-ONLY POSE FILTERING IN A NERF
After executing an action from the planned trajectory, the robot
must close the loop and estimate its pose using its onboard
sensors (e.g. a monocular camera). In this section we address
the problem of how a robot can update its pose belief given a
measurement and its most recent control action.

Our method is most closely related to [19] where an initial
pose estimate is optimized by minimizing the photometric loss
between the pixels in the image and the predicted pixels via
the projected NeRF scene. However, this method is a single-
shot estimator and is highly dependent on the initialization.
We formulate a state estimation filter that adds a process
loss to the same photometric loss. This additional loss term

𝑇

SE(3)

𝛿
𝛿ଵ

𝑇′

𝑇

𝑇

SE(3)

𝛿

𝛿ଵ

𝑇

𝛿ଶ

𝛿ଷ

Fig. 4. Recursive SE(3) optimization (left) vs. Optimization in tangent plane
(right)

provides benefits beyond the prior work by estimating a pose
and its derivatives. Additionally, the state estimation should
be more robust when the robot travels through regions of
low photometric gradient information, relying more on the
dynamics model. Lastly, the filter produces a state covariance
which can be useful for other robotics algorithms running in
parallel, such as collision avoidance with dynamic agents [31].

A. Optimization formulation
At each timestep, the estimator is provided a new image It,
the previous action taken ut, and a Gaussian belief over the
state xt−1 with mean µt−1 and covariance Σt−1. Using this
information, we update the belief as follows:

µt|t−1 = f(µt−1,ut) (3)

At−1 =
∂f(x,ut)

∂x

∣∣∣
x=µt−1

(4)

Σt|t−1 = At−1Σt−1A
T
t−1 + Qt−1 (5)

where the dynamics are modeled as xt = f(xt−1,ut) with
process noise covariance Qt.

As in [19], a subset of pixels I are selected for evaluation
using existing image feature detectors (e.g. ORB) to iden-
tify points of interest and bias the sampling around these
areas of higher gradient information. The pose of the robot
Tt ∈ SE(3) can be constructed from the position and rotation
elements of µt. With this information, the cost function to be
minimized is

J(µt) =

photometric loss︷ ︸︸ ︷
‖CI(Tt)− It(I)‖2S−1

t
+

process loss︷ ︸︸ ︷
‖µt|t−1 − µt‖2Σ−1

t|t−1

(6)

where St is the measurement noise covariance and the notation
‖x‖2M = xTMx is the weighted `2 norm. Minimizing this
equation gives the updated mean µt. Outlier rejection is
performed on the per-pixel loss to reduce variance.

Finally, we leverage the known relationship between the
Hessian of a Gaussian loss function and the covariance [32]
to yield the posterior covariance,

Σt =

(
∂2J(x)

∂x2

∣∣∣
x=µt

)−1
. (7)

B. Performance enhancing optimization details
The approach in [19] optimizes for the state by taking gradient
steps with respect to a reference pose and projecting onto the
SE(3) manifold after the optimization to recover the state
estimate. Instead, we project back onto the manifold after
every gradient step. This is illustrated in Fig. 4. These two
methods are mathematically distinct, as the multiplication

ADAMKIEWICZ et al.: NERF-NAV 5

of skew-symmetric matrices in the exponential map do not
commute. Explicitly,

exp(δ1) exp(δ2) · · ·T 6= exp(δ1 + δ2 + · · ·)T, (8)

where T is the reference homogeneous transformation matrix,
and exp(·) is the exponential map between the tangent space
and manifold. Qualitatively we observe that the recursive
SE(3) gradient descent converges quicker and more smoothly
than the method in [19], which we attribute to the noisy
photometric loss landscape over the SE(3) manifold. Please
see [33] for further Lie theory details. Optimization on the
manifold is implemented using the LieTorch library [34].

VI. ONLINE REPLANNING FOR VISION-ONLY
NAVIGATION

We combine the trajectory planner from Sec. IV and the state
estimator from Sec. V in an online replanning formulation.
The robot begins with an initial prior of its state belief, a final
desired state, as well as the trained NeRF.

The robot first plans a trajectory as described in Sec. IV.
The robot then executes the first action (in this case inside a
simulator), and the state filter takes in a new image and updates
its belief. The mean of this posterior is used in the trajectory
planner as a new starting state and along with the rest of the
previous waypoints at a hot start, re-optimizes the trajectory
taking into account any disturbances. This continues until the
robot has reached the goal state. This process is described in
Alg. 1. This allows the robot to create new updated plans that
take into account disturbances. Figure 5 show an example of
a trajectory being reoptimised given new information.

Algorithm 1 Receding Horizon Planner
1: Inputs: (µ0, Σ0) initial state prior, xgoal desired final state,
N trained NeRF model of environment.

2: W ← A∗(µ0,xgoal)
3: while not at xgoal do
4: W ← trajOpt(W) [Sec. IV]
5: x, u← getStatesActions(W)
6: I ← getCameraImage()
7: µt,Σt ← poseFilter(I,µt−1,Σt−1,ut) [Sec.V]
8: W ← [µt,W[2:end]]

VII. EXPERIMENTS
We demonstrate the performance of our method using a variety
of high-fidelity simulated mesh environments (scene meshes
by Sketchfab users Ahmad Azizi, artfletch, & ruslans3d).
Since our method assumes a trained NeRF model, we first
render a sequence of images from the mesh. These images are
used to train a NeRF model using an off-the-shelf PyTorch
implementation [35]. Rendering images from a mesh with [36]
(rather then images taken with a camera in the real world)
provides a ground truth reference for the scene geometry with
which to evaluate our method. The robot’s sensor images are
similarly rendered from the ground truth environment, but the
trajectories are different so any query of the NeRF model
differs from the training data.

The experiment section is divided into 3 parts: We first
evaluate the performance of our trajectory planner on its own,

Fig. 5. Results for the proposed trajectory optimizer navigating through
Stonehenge. The blue trajectory is the initial plan returned by our optimizer.
We then roll out the dynamics noisily for a number of timesteps (white)
and re-optimize the trajectory (green). The planner responds to a vertical
disturbance by opting to fly above the arch, rather than below as initially
planned. Changing homotopy classes around obstacles is quite difficult for
existing differential flatness-based planners

then the state estimator on it own, before demonstrating the
complete online replanning pipeline.

We first study the performance of our trajectory optimizer
alone on a number of benchmark scenes. We demonstrate that
our trajectory optimizer can generate aggressive, dynamically
feasible trajectories for a quadrotor and an omni-directional
robot which avoid collision.

A. Planner - Ground truth comparison
In order to use a NeRF to reason about collisions, we need
to show that the learned optical density is a good proxy
for real world collisions. We compare the NeRF predicted
collisions during various stages of trajectory optimization with
the ground truth mesh intersecting volume, during planning
of a quadrotor path through a playground environment. The
trajectories are shown in Fig. 6(a). Fig. 6(b) shows the
relationship between the collision loss term from (2) and
overlap between the robot volume and the ground truth mesh
over time. In addition to planner finding a smooth, collision-
free (i.e., zero mesh intersection volume) trajectory, we can see
that throughout training the NeRF density and mesh overlap
are closely matched.

B. Planner - Comparison to prior work
Since this method is, to our knowledge, the first method
to operate on NeRFs, direct comparisons are difficult. We
compare to two widely used techniques that we have adapted
to work on a NeRF environment representation: minimum-
snap trajectory planning and Rapidly-exploring Random Trees.

Minimum-snap trajectory planning [29], similarly to our
method, uses differential flatness to compute trajectories that
pass through a series of waypoints. However, this method
typically uses hand-placed waypoints, whereas our method is
capable of optimizing the locations of those waypoints based
on the NeRF. In this comparison, we generate the waypoints
for the minimum-snap planner using the same A* algorithm
our method uses for initialization.

Rapidly-exploring Random Trees (RRT) is a sampling based
method that generates a space-filling tree used to find a
collision free trajectory. Since it requires a binary collision

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022.

(a)

(b)

Fig. 6. Results of our proposed trajectory optimizer planning a path through
a playground. (a) Visualization of the optimized trajectory generated by our
planner. The initialization provided is shown in red and a partially-optimized
trajectory in blue. We see the optimizer converge to a trajectory that both
avoids collision and is smooth by observation. (b): Plot of the NeRF collision
loss (solid lines), and the intersecting volume of the ground-truth meshes
(dashed lines). Lower is better. We see the NeRF collision loss is clearly
correlated with the intersection volume, showing that minimizing our proposed
objective (2) indeed minimizes collision. Note that by iteration 49 optimizer
converges to a trajectory that has zero intersections with the ground truth
meshes.

metric, we first convert the NeRF into a mesh using marching
cubes, as in [37]. When generating the RRT, we use a spherical
collision model, as we cannot know the robot’s orientation
at the planning stage, since the RRT only selects positions.
Finally, in order to extract the control actions required to
follow the RRT trajectory, we use a a differential flatness-
based controller [29].

To evaluate performance we run all 3 methods on 10
trajectories with a range of obstacles, speed and complexities
inside the Stonehenge environment. Fig. 7(c) shows the mean
costs associated with each planner, along with the failure
rate (defined as an collision with the ground truth mesh) in
the trajectories. Additionally Fig. 7(a) shows the 3 planners’
qualitative performance.

C. Planner - Omnidirectional robot in tight space
Our method is not limited to quadrotors, but can handle
any robot with differently flat dynamics. Figure 8 presents
an omnidirectional, couch-shaped mobility robot navigating
through a narrow space. This scenario presents a difficult
kinematic planning problem, commonly called the “piano
movers’ problem” [38], which requires the robot to turn to

(a)

(b)

(c)

Fig. 7. A comparison between our planner and the minimum-snap and RRT
baselines. (a) Example trajectories the planners take though the Stonehenge
environment. Our planner can move the waypoints to result in a smooth trajec-
tory compared to minimum-snap, which exactly follows the A* initialization.
Further, while our planner’s trajectory does not collide with the ground truth
mesh the minimum-snap trajectory clips the column on the right. While RRT
generates a collision-free trajectory, its erratic shape leads to a high control
effort. (b) Color-matched start and endpoints of the trajectories along with an
indication if they were successful for a given planner (crosses use the same
coloring as in (a)). (c) Each planner’s mean NeRF collision metric and control
effort per time step, averaged over the 20 initializations. We can see that our
method yields trajectories with low control effort, low NeRF collision cost,
as well as a low failure rate.

fit its body through the narrow gap. The trajectory optimizer,
using the proposed NeRF-based collision penalty, is able to
generate the desired behavior, which turns the robot to fit
through the gap.

D. Estimator - Comparison to prior work

We evaluate two methods of estimating the robot state in
the NeRF Stonehenge environment. We anticipate that an
iNeRF [19] estimator initialized without a dynamics prior will
very quickly diverge. Therefore, we propose a dynamically-

ADAMKIEWICZ et al.: NERF-NAV 7

Fig. 8. A planned trajectory for a couch-shaped mobility robot through a
narrow gap. The proposed NeRF-based collision penalty results in a trajectory
which turns the robot to fit through the gap and avoid collision.

0 1 2 3 4 5 6 7 8 9

0.00

0.05

0.10

0.15

0.20

Ro
ta

tio
na

l E
rro

r

0 1 2 3 4 5 6 7 8 9

0.0

0.1

0.2

0.3

Tr
an

sla
tio

na
l E

rro
r

0 1 2 3 4 5 6 7 8 9
Time Step

0.02

0.04

0.06

ω
 E

rro
r

0 1 2 3 4 5 6 7 8 9
Time Step

0.0

0.2

0.4

0.6

Ve
lo

cit
y

Er
ro

r

Filter INeRF W/ Dynamics

Fig. 9. Error comparison averaged over 100 trials. Rotational errors are the `2
norm of the angles in axis-angle representation required to rotate the estimated
pose to the ground truth. Translational and rate errors are the `2 norm of the
estimated and ground truth difference. Bounds indicate one standard deviation
above and below the mean error. Regions between time steps are the gradient
steps of the optimization, while spikes at the beginning of time steps indicate
the forward propagation of the simulation, a new image observation, and a new
optimization. Our method (red) outperforms the dynamically initialized iNeRF
(green) in rotational, translational, and velocity estimates while sporting lower
variance.

informed iNeRF estimator as a baseline. The estimate is prop-
agated through the dynamics model to provide an initialization
to the estimator at the next time step. Only the photometric loss
is optimized. This estimator is identical to a recursive Bayesian
filter with infinite state covariance, hence the process loss is set
to 0. The second method is our full filter proposed in Sec. V.
We evaluate these methods on a identical set of actions and
initial state. For our filter, we assume Σ0 = 0.1I , Qt = 0.1I ,
St = I , and use I = 256 pixels. Zero-mean Gaussian white
noise is added to the true dynamics with standard deviation
2cm for the translation and 0.02rad to the pose angles, while
the standard deviation for their rates are half those values. For
comparison, the scene area is scaled to be approximately 4m2

and the drone is 0.5cm3 in volume.
A comparison on the two methods over 100 trials con-

ditioned on the same initial state, set of actions, and noise
characteristics is shown in Fig. 9. Our method outperforms the

(a) (b)

Fig. 10. (a) Quadrotor flight path execution with feedback. The originally
planned trajectory is in red. However, when the state estimate deviates
significantly from the planned trajectory, the robot re-plans and executes a
collision-free path to the goal, as shown by the re-planned trajectories in blue
and green. (b) Quadrotor flight path execution without feedback (open-loop).
An external disurbance causes the trajectory to deviate from the original plan
(red) with catastrophic results.

dynamically-informed iNeRF baseline on almost every metric
and does not under-perform. We again bring attention to the
fact that our filter provides a finite state covariance, which
may be useful in determining low-fidelity regions of the NeRF
environment.

E. Online Replanning
We evaluate performance of the entire pipeline on planned
trajectories in the playground and Stonehenge scenes. The
ground truth dynamics are the finite difference drone equations
in Sec. V with the same additive noise as in our estimator
experiment. Although the executed trajectories incur a higher
cost than the initial plan, the planner is still able to generate
collision-free trajectories (Fig. 10(a)) and reach the goal,
whereas an open-loop execution (Fig. 10(b)) of the initial
planned actions causes collisions and divergence.

F. Performance and Timing
Experiments were run on a computer with an AMD Ryzen
9 5900X @ 3.7 GHz CPU and Nvidia RTX 3090 GPU.
Both the trajectory planner and estimator computation time
is dependent on number of iterations. Typically, an initial
trajectory requires 20s over 2500 iterations to optimize. In
the online replanning experiments (∆t = 0.1s), subsequent
trajectory updates occur in 2s over 250 iterations. The state
estimator typically runs for 4s over 300 gradient steps, 0.25s
of which is the Hessian computation (7). However, NeRFs are
a fast-evolving technique and extensions have seen orders-of-
magnitude improvements in performance [14], [39], which we
hope to leverage in the future.

Assuming those performance gains apply for our use case,
we could expect to be able to run this type of algorithm in
real time on a real robot, perhaps aided by off-board compute,
in the near future.

VIII. CONCLUSIONS

In this work, we proposed a trajectory planner and pose filter
that allow robots to harness the advantages of the NeRF
representation for collision-free navigation. We presented a
new trajectory optimization method based on discrete time
differential flatness dynamics, and combined this with a new
vision-based state filter to create a full online trajectory
planning and replanning pipeline.

Ongoing work seeks to further integrate perception and

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022.

control in an active planning manner, both by encouraging
the trajectories to point the camera in directions with greater
gradient information as well as use the uncertainty metrics cal-
culated by the state estimator to reduce collision risk. Another
direction for future work includes harnessing improvements
in the underlying NeRF representation to improve execution
speed [14], since this is the limiting factor for the proposed
method.

We also seek to extend this work to utilize multiple NeRFs
to represent scenes with movable objects, and explore how
various robots such as manipulators could interact with such
an environment. Lastly, further work could look to improve
the pixel sub-sampling heuristic employed by the state filter.
Finally, we would like to implement the proposed method
on quadrotors in real scenes to demonstrate the performance
beyond simulation.

REFERENCES
[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,

and R. Ng, “Nerf: Representing scenes as neural radiance fields for view
synthesis,” in European conference on computer vision. Springer, 2020,
pp. 405–421.

[2] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, and
D. Scaramuzza, “Learning high-speed flight in the wild,” Science
Robotics, vol. 6, no. 59, p. eabg5810, 2021.

[3] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and
D. Scaramuzza, “Deep drone racing: From simulation to reality with
domain randomization,” IEEE Transactions on Robotics, vol. 36, no. 1,
pp. 1–14, 2020.

[4] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “iMAP: Implicit Mapping
and Positioning in Real-Time,” arXiv:2103.12352 [cs], Mar. 2021.

[5] Z. Wang, S. Wu, W. Xie, M. Chen, and V. A. Prisacariu, “NeRF−−:
Neural radiance fields without known camera parameters,” arXiv
preprint arXiv:2102.07064, 2021.

[6] “Nerf-gto: Using a neural radiance field to grasp transparent objects,”
https://sites.google.com/view/nerf-gto/home, 2021.

[7] W. Yuan, Z. Lv, T. Schmidt, and S. Lovegrove, “Star: Self-supervised
tracking and reconstruction of rigid objects in motion with neural
rendering,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 13 144–13 152.

[8] M. Niemeyer and A. Geiger, “GIRAFFE: Representing Scenes as
Compositional Generative Neural Feature Fields,” arXiv:2011.12100
[cs], Apr. 2021, comment: Accepted to CVPR 2021 (oral). Project page:
http://bit.ly/giraffe-project.

[9] J. Ost, F. Mannan, N. Thuerey, J. Knodt, and F. Heide, “Neural Scene
Graphs for Dynamic Scenes,” arXiv:2011.10379 [cs], Mar. 2021.

[10] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer, “D-
NeRF: Neural Radiance Fields for Dynamic Scenes,” arXiv:2011.13961
[cs], Nov. 2020.

[11] G. Gafni, J. Thies, M. Zollhofer, and M. Nießner, “Dynamic neural
radiance fields for monocular 4d facial avatar reconstruction,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 8649–8658.

[12] M. Tancik, B. Mildenhall, T. Wang, D. Schmidt, P. P. Srinivasan, J. T.
Barron, and R. Ng, “Learned Initializations for Optimizing Coordinate-
Based Neural Representations,” arXiv:2012.02189 [cs], Mar. 2021,
project page: https://www.matthewtancik.com/learnit.

[13] A. Yu, V. Ye, M. Tancik, and A. Kanazawa, “pixelnerf: Neural radiance
fields from one or few images,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
4578–4587.

[14] S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin,
“Fastnerf: High-fidelity neural rendering at 200fps,” arXiv preprint
arXiv:2103.10380, 2021.

[15] M. Michalkiewicz, J. K. Pontes, D. Jack, M. Baktashmotlagh, and
A. Eriksson, “Implicit Surface Representations As Layers in Neural
Networks,” in 2019 IEEE/CVF International Conference on Computer
Vision (ICCV). Seoul, Korea (South): IEEE, Oct. 2019, pp. 4742–4751.

[16] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation,” Jan. 2019.

[17] V. Sitzmann, J. N. P. Martel, A. W. Bergman, D. B. Lindell, and
G. Wetzstein, “Implicit Neural Representations with Periodic Activation
Functions,” arXiv:2006.09661 [cs, eess], Jun. 2020.

[18] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger,
“Occupancy Networks: Learning 3D Reconstruction in Function
Space,” arXiv:1812.03828 [cs], Apr. 2019, comment: To be presented
at CVPR 2019. Supplementary material and code is available at
http://avg.is.tuebingen.mpg.de/publications/occupancy-networks.

[19] L. Yen-Chen, P. Florence, J. T. Barron, A. Rodriguez, P. Isola, and T.-Y.
Lin, “iNeRF: Inverting neural radiance fields for pose estimation,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2021. [Online]. Available: https://github.com/salykovaa/inerf/

[20] M. Kelly, “An Introduction to Trajectory Optimization: How to Do Your
Own Direct Collocation,” SIAM Review, vol. 59, no. 4, pp. 849–904, Jan.
2017.

[21] J. T. Betts, Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming, Second Edition, 2nd ed. Society for Industrial
and Applied Mathematics, 2010.

[22] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and tracking,” in 2011
10th IEEE International Symposium on Mixed and Augmented Reality,
2011, pp. 127–136.

[23] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox:
Incremental 3D Euclidean Signed Distance Fields for on-board MAV
planning,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Sep. 2017, pp. 1366–1373.

[24] L. Han, F. Gao, B. Zhou, and S. Shen, “FIESTA: Fast incremental
euclidean distance fields for online motion planning of aerial robots,”
in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2019, pp. 4423–4430.

[25] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” in 2009
IEEE International Conference on Robotics and Automation, May 2009,
pp. 489–494.

[26] J. Mainprice, N. Ratliff, and S. Schaal, “Warping the workspace ge-
ometry with electric potentials for motion optimization of manipulation
tasks,” in 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Oct. 2016, pp. 3156–3163.

[27] B. Zhou, J. Pan, F. Gao, and S. Shen, “RAPTOR: Robust and Perception-
Aware Trajectory Replanning for Quadrotor Fast Flight,” IEEE Trans-
actions on Robotics, vol. 37, no. 6, pp. 1992–2009, Dec. 2021.

[28] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in 2011 IEEE International Conference on
Robotics and Automation, May 2011, pp. 2520–2525.

[29] D. Mellinger, “Trajectory Generation and Control for Quadrotors,” Ph.D.
dissertation, University of Pennsylvania, 2012.

[30] M. J. V. Nieuwstadt and R. M. Murray, “Real-time trajectory generation
for differentially flat systems,” International Journal of Robust and
Nonlinear Control, vol. 8, no. 11, pp. 995–1020, 1998.

[31] G. Angeris, K. Shah, and M. Schwager, “Fast Reciprocal Collision
Avoidance Under Measurement Uncertainty,” in 2019 International
Symposium of Robotics Research (ISRR), Hanoi, Vietnam, 2019.

[32] K.-V. Yuen, Bayesian Methods for Structural Dynamics and Civil
Engineering. John Wiley & Sons, Ltd, 2010, ch. Appendix
A: Relationship between the Hessian and Covariance Matrix for
Gaussian Random Variables, pp. 257–262. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470824566.app1

[33] J. Sola, J. Deray, and D. Atchuthan, “A micro lie theory for state
estimation in robotics,” https://arxiv.org/pdf/1812.01537.pdf, 2018.

[34] Z. Teed and J. Deng, “Tangent space backpropagation for 3d trans-
formation groups,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021, project page:
github.com/princeton-vl/lietorch.

[35] L. Yen-Chen, “Nerf-pytorch,” https://github.com/yenchenlin/
nerf-pytorch/, 2020.

[36] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner,
N. Maestre, M. Mukadam, D. Chaplot, O. Maksymets, A. Gokaslan,
V. Vondrus, S. Dharur, F. Meier, W. Galuba, A. Chang, Z. Kira,
V. Koltun, J. Malik, M. Savva, and D. Batra, “Habitat 2.0: Training home
assistants to rearrange their habitat,” arXiv preprint arXiv:2106.14405,
2021.

[37] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis,” arXiv:2003.08934 [cs], Aug. 2020, comment: ECCV
2020 (oral). Project page with videos and code: http://tancik.com/nerf.

[38] J. T. Schwartz and M. Sharir, “On the “piano movers”’ problem I.
The case of a two-dimensional rigid polygonal body moving amidst
polygonal barriers,” Communications on Pure and Applied Mathematics,
vol. 36, no. 3, pp. 345–398, 1983.

[39] C. Sun, M. Sun, and H.-T. Chen, “Direct voxel grid optimization: Super-
fast convergence for radiance fields reconstruction,” 2021.

https://github.com/salykovaa/inerf/
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470824566.app1
https://github.com/yenchenlin/nerf-pytorch/
https://github.com/yenchenlin/nerf-pytorch/

	Introduction
	Related Work
	Neural implicit representations
	Trajectory optimization

	Problem Formulation
	Trajectory Planning in a nerf
	Differential flatness
	Optimization formulation
	Initialization

	Vision-Only Pose Filtering in a nerf
	Optimization formulation
	Performance enhancing optimization details

	Online Replanning for Vision-Only Navigation
	Experiments
	 blackPlanner - Ground truth comparison
	blackPlanner - Comparison to prior work
	blackPlanner - Omnidirectional robot in tight space
	blackEstimator - Comparison to prior work
	 blackOnline Replanning
	 blackPerformance and Timing

	Conclusions
	References

