
Learning Mixed-Integer Convex Optimization Strategies for
Robot Planning and Control

Abhishek Cauligi∗, Preston Culbertson∗, Bartolomeo Stellato, Dimitris Bertsimas, Mac Schwager, and Marco Pavone

Abstract—Mixed-integer convex programming (MICP) has
seen significant algorithmic and hardware improvements with
several orders of magnitude solve time speedups compared to
25 years ago. Despite these advances, MICP has been rarely
applied to real-world robotic control because the solution times
are still too slow for online applications. In this work, we extend
the machine learning optimizer (MLOPT) framework [1, 2] to
solve MICPs arising in robotics at very high speed. MLOPT
encodes the combinatorial part of the optimal solution into a
strategy. Using data collected from offline problem solutions,
we train a multiclass classifier to predict the optimal strategy
given problem-specific parameters such as states or obstacles.
Compared to [2], we use task-specific strategies and prune
redundant ones to significantly reduce the number of classes the
predictor has to select from, thereby greatly improving scalability.
Given the predicted strategy, the control task becomes a small
convex optimization problem that we can solve in milliseconds.
Numerical experiments on a cart-pole system with walls, a free-
flying space robot and task-oriented grasps show that our method
provides not only 1 to 2 orders of magnitude speedups compared
to state-of-the-art solvers but also performance close to the
globally optimal MICP solution.

I. INTRODUCTION

Mixed-integer convex programming (MICP) is a powerful
technique to model robotic tasks such as motion planning [3,
4], planning for systems with contact [5, 6] and dexterous
manipulation [7, 8]. By defining explicitly the discrete con-
trol decisions, we can, theoretically, solve MICPs to global
optimality with branch-and-bound or outer approximation al-
gorithms [9]. However, computing the optimal solutions is, in
practice, computationally challenging.

Despite recent advances [10], MICPs have seen limited
application in real-world robotic tasks for the following two
reasons:

• Slow computation times: it is still challenging to solve
MICPs in online settings where real-time computations
are crucial. For example, many planning and control tasks
require solutions in few milliseconds and typical solution
times range from seconds to minutes [6].

• Non-embeddable algorithms: the best off-the-shelf
solvers such as Gurobi [11] or Mosek [12] rely on com-

A. Cauligi, M. Schwager, and M. Pavone are with the Department of
Aeronautics and Astronautics, Stanford University, Stanford, CA 94305.
{acauligi, schwager, pavone} @stanford.edu.

P. Culbertson is with the Department of Mechanical Engineering, Stanford
University, Stanford, CA 94305. {pculbertson} @stanford.edu.

B. Stellato and D. Bertsimas are with the Operations Research Center, MIT,
Cambridge, MA 02139. {stellato, dbertsim} @mit.edu.

This work was supported in part by NASA under the NASA Space Tech-
nology Research Fellowship Grants NNX16AM78H and 80NSSC18K1180.

∗These authors contributed equally to this work.

Offline

Data generation

Learned

S(θ) ≈ ĥ(θ)

Online

Given

Control action

θ

Predict

ĥ(θ)

u

strategyparameter

TrainingStrategy
simplification

Fig. 1: MLOPT framework for a motion planning task with free-flying
space robots. A strategy classifier is trained offline on a dataset of
problems. We added a block to simplify the number of strategies
to select. Online, we use the strategy classifier to predict optimal
trajectories given a new task specification for the MICP.

plex multithreaded implementations that are not suitable
for embedded robot platforms.

This is why there is still a large gap between modeling
and real-world implementation of MICP-based controllers in
robotics systems. To fill this gap, in this paper we exploit the
idea that by solving a large number of MICP instances one can
generate a large amount of offline data that can be purposefully
used to significantly accelerate online solutions.

A. Statement of Contributions

To leverage offline data to accelerate online solutions, in
this paper we build upon the machine learning optimizer
(MLOPT), recently introduced in [1, 2]. In detail, the MLOPT
framework consists of offline and online phases that are no-
tionally represented in Figure 1. In the offline phase we collect
data by solving a given control problem for several values of
the key parameters (initial state, obstacles, object locations),
obtaining the optimal solutions. Given each optimal solution,
we save the strategy, i.e., the value of its integer components.
We then select only the unique strategies that appeared and
we assign them a label. After the dataset generation we train a
neural network which classifies the best strategy to apply given
new problem parameters. Given a parameter and its optimal
strategy, the resulting optimization problem is a continuous
convex optimization problem that can be efficiently solved.
Online, MLOPT consists of a forward neural network strategy
prediction and a convex optimization which can be carried
out very efficiently [13]. However, MLOPT naı̈vely applied
to robotics problems can not in general provide reliable time

ar
X

iv
:2

00
4.

03
73

6v
1

 [
cs

.R
O

]
 7

 A
pr

 2
02

0

solve times, since the number of unique strategies can be too
large to obtain high accuracy multiclass classification.

In this work, we leverage problem-specific information and
structure to solve MICPs in robotics to improve the perfor-
mance and reliability of the MLOPT predictors. Our detailed
contributions are as follows. First, we propose a methodology
to identify and remove redundant strategies corresponding to
the same globally optimal continuous solution. This happens
often in robotic settings, for example, when we obtain multiple
integer assignments for the same obstacle avoidance path or
multi-contact trajectory. Second, we introduce the notion of
task-specific strategies that allows us to exploit the separable
structure of robotics problems, thereby greatly improving scal-
ability. Examples of structured problems include path planning
where we can decouple combinatorial decisions obstacle-
wise. For these settings, we learn a predictor for a single
combinatorial decision, e.g., on which side of the obstacle the
robot should pass. Online, we can apply the same predictor
for every combinatorial decision we have to make. This idea
greatly simplifies the number of unique strategies encountered
by focusing on every independent decision. Finally, numerical
experiments on a cart-pole system with walls, a free-flying
space robot and task-oriented grasps show that our method
achieves strategy prediction accuracy above 95% with less
than 10% suboptimality when the prediction is not correct.
In addition, we obtain computational speedups from 1 to 2
orders of magnitude compared to MICP solvers Gurobi [11]
and Mosek [12]. Therefore, the proposed algorithm is suitable
to compute MICP solutions in real-time reliably and at very
high-speed.

B. Related Work

Recently, there has been a surge of interest in applying data-
driven methods in accelerating solution times for optimization-
based controllers. In [14, 15], neural networks are used to
warm start a solver for a QP-based controller used in a
receding horizon fashion. Tang, et al. also consider non-
convex optimization-based controllers by learning warm starts
for an SQP-based trajectory optimization library [16] and
for indirect optimal control methods [17]. Using tools from
differentiable convex optimization, a learning-based approach
to tune optimization-based controllers is proposed in [18].
While these methods have shown considerable promise, they
only consider the setting of continuous optimization.

Relatively less attention has been paid to using data-driven
techniques for accelerating integer program solutions in con-
trol [19, 20]. A popular class of methods has been to pose
branch-and-bound as a sequential decision making process
and apply imitation learning to learn effective variable and
node selection strategies [21, 22]. However, these approaches
can still be too computationally expensive for applications
in control, as they require solving branch-and-bound and
computing multiple forward passes of a neural network online.

Masti and Bemporad [23] use a regression based approach
to train a neural network to learn binary variable assignments.
However, the authors only demonstrate this approach on an
MIQP with 14 binary variables. An approximate dynamic
programming approach is presented in [5], where the cost-

to-go function for an MIQP controller is learned. However,
the approach still requires solving an expensive MIQP using
branch-and-bound online. Hogan, et al. [8] propose an ap-
proach similar to ours in that they train a classifier to predict
mode sequences for a manipulation task, but our formulation
is more general in being able to handle a larger class of mixed
logical dynamical systems.

Our approach draws inspiration from the field of explicit
MPC [24]. However, instead of learning feedback control
laws for polyhedral regions of the state space, we learn
strategies for regions of the parameter space of the problem.
Our work is also inspired by recent methods from multi-task
and meta learning [25, 26] which use task embeddings to
identify and solve various tasks. From this view, the optimal
control problem parameters correspond to a pre-defined task
embedding, and our machine learning problem is to map this
embedding to a strategy which yields a convex optimization
solution with low cost.

II. TECHNICAL BACKGROUND

A. Mixed-Integer Convex Programs

In this work, we focus our attention on a specific class of
discrete optimization problems known as parametrized mixed-
integer convex programs. The general form of this problem is:

minimize f0(x, δ; θ)
subject to fi(x, δ; θ) ≤ 0, i = 1, . . . ,mf

δ ∈ {0, 1}nδ ,
(1)

where x ∈ Rnx are continuous decision variables, δ ∈
{0, 1}nδ are binary decision variables, and θ ∈ Rnp are the
problem parameters. The objective function f0 and inequality
constraints fi are convex. While problem (1) is NP-hard
due to the inclusion of discrete decision variables δ [27], it
can be solved to global optimality using algorithms such as
branch-and-bound, which operates by sequentially building an
enumeration tree of relaxed problems to the original problem.

B. Strategies for MICPs

Here, we briefly review the notion of a strategy as defined
in [1, 2]. For an MICP defined by parameters θ ∈ Rnp ,
a strategy S(θ) consists of a tuple

(
δ∗, T (θ)

)
where (x∗,

δ∗) is an optimizer of the problem (1), and T (θ) = {i ∈
{1, . . . ,mf} | fi(x∗, δ∗; θ) = 0} is the corresponding set of
active inequality constraints.

Given an optimal strategy S(θ), we can obtain an optimal
solution for (1) by solving a convex optimization,

minimize f0(x, δ∗; θ)
subject to fi(x, δ

∗; θ) ≤ 0, i ∈ T (θ),

which is much easier than the original MICP (1). In fact, if
the original problem (1) is a mixed-integer quadratic program
(MIQP) or mixed-integer linear program (MILP), solving the
reduced problem corresponds to simply solving a set of linear
equations defined by the KKT conditions.

This insight motivates the supervised learning problem con-
sidered in [2], wherein the authors aim to learn an approximate
mapping hφ from problem parameters θ to a corresponding

strategy S(θ). The authors pose this as a multiclass classifi-
cation problem over a dataset D = {(θi,Si)}Ti=1 of problem
parameters θi sampled from a (known) distribution p(Θ), and
their corresponding strategies Si.

C. Big-M Formulations of Mixed Logical Dynamical Systems

A common modeling choice in MICPs is to use the binary
variables δ to capture high-level discrete or logical behavior
of the system (e.g., contact, task assignment, hybrid control
logic), and to enforce the resulting high-level behavior on
the continuous variables x using what is known as big-M
formulation [28].

For example, suppose we have a logical variable δi, which
determines if the constraint fi(x; θ) ≤ 0 on the continuous
variables x is active, i.e., we seek to impose that

[δi = 1] =⇒ [gi(x; θ) ≤ 0] . (2)

Further, let us define

Mi(θ) = sup
x
fi(x; θ),

which is simply an upper bound on the constraint function, and
may be precomputed. Then, (2) can be achieved by imposing
the constraint

gi(x; θ) ≤Mi(θ)(1− δi), (3)

which we note is linear in δi. By inspection, when δi = 1,
the constraint is active, and when δi = 0, we have the
trivial constraint fi(x; θ) ≤ Mi(θ). More complex logical
behavior (such as disjunctive constraints) can be achieved
using additional logical variables and constraints; for a more
thorough treatment, we refer the reader to [28].

More generally, let us denote a “big-M” constraint as

gi(x; θ) ≤ ai(θ)δi,
where ai(θ) are constants which, in general, use the constraint
bounds to impose the desired logical behavior.

D. Uniqueness of Global Optima

We further note that since MICPs are non-convex, they may
admit multiple global optima. Yet, for many physical systems,
while the program itself is non-convex, the continuous opti-
mizers x∗, (e.g., the shortest path through an obstacle field)
are generally unique. Thus, we say a program is well-posed
if it admits a unique continuous minimizer x∗, and we say a
program is completely well-posed if it admits a unique global
minimizer (x∗, δ∗). In this work, we assume the problems
considered are well-posed, although they may admit multiple
discrete optimizers δ∗.

To this end, for a particular solution (x∗, δ∗), we consider
a big-M constraint tight if

gi(x; θ) ≤ ai(θ)δi ⇐⇒ δi = δ∗i ,

meaning that for the particular continuous solution x∗, this
constraint may only be satisfied by the values from solution
δ∗. For example, considering the implication constraint (3),
suppose for some particular solution x∗, gi(x∗; θ) ≤ 0. Then,

since the inequality may be satisfied by either δi = 0 or δi = 1,
δ∗i is not unique; thus, this big-M constraint is not tight.

In this work, we use big-M constraints exclusively to relate
the continuous variables x and logical variables δ. If mM is
the number of big-M constraints used, we can write more
specifically the class of MICPs studied:

minimize f0(x, δ; θ)
subject to fi(x; θ) ≤ 0, i = 1, . . . ,mf

gi(x; θ) ≤ ai(θ)δi, i = 1, . . . ,mM

δ ∈ {0, 1}nδ ,
(P(θ))

III. SUPERVISED LEARNING STRATEGIES FOR MICPS

In this section we show how to apply MLOPT to solve
online MICP control tasks by pruning the redundant strate-
gies and by designing task-specific strategies exploiting the
structure of the problem. We finally introduce the complete
algorithm and discuss online and offline details.

A. Pruning Redundant Strategies
Although the strategy classification problem presented in [2]

provided promising results, it is unable to handle the general
class of MICP problems commonly appearing in robotics,
and specifically those using integer variables to model mixed
logical dynamical systems [28]. A specific pitfall with naı̈vely
using the approach from [2] occurs when considering a prob-
lem which is well-posed (i.e., it has a unique optimal value
and continuous optimizer x∗), but admits multiple discrete
optimizers δ∗. In this case, there exist multiple optimal strate-
gies (δ∗, T (θ)), and thus multiple correct labels for the same
problem data θ, which makes the supervised learning problem
ill-posed. This can occur, for example, when implication
constraints (2) are included in the model, or when using logical
“OR” constraints between variables.

To ameliorate this issue, we leverage the insight that for
our problem P(θ), a strategy S(θ) can be equivalently, and
uniquely, defined by considering only the set of big-M con-
straints which are tight.

Thus, let us instead define a strategy S(θ) as a tuple
(δ∗(θ), TM (θ)), where

TM (θ) = {i | gi(x∗; θ) ≤ ai(θ)δi ⇐⇒ δi = δ∗i }, (4)

meaning TM is the set of big-M constraints which can only
be satisfied by the given assignment from δ∗. Since each δi ∈
{0, 1}, this set may be easily computed. Thus, by definition,
our classification problem is once again well-posed.

While we could additionally label which continuous con-
straints are active, as in [2], we note that many common
problems in robotics are more general than MIQPs or MILPs,
and thus cannot be solved via the KKT conditions. Instead,
at runtime, we choose to solve the corresponding convex
optimization which results from simply setting y = δ∗.

Although this revised notion of strategies for MICPs alle-
viates the concerns of multiple integer assignments δ∗, in the
case of an ill-posed problem, there may also exist multiple
optimal continuous solutions x∗ which achieve the globally
optimal objective. For example, Figure 2 illustrates a case
in which multiple x∗ correspond to two different homotopy
classes for a motion planning problem around a symmetric

Fig. 2: A motion planning problem where two continuous solutions
traversing either side of an obstacle have the same optimal objective.

set of obstacles. In this work, we neglect such cases, since
they are somewhat rare for physical problems, and usually
correspond to such pathological cases.

B. Task-Specific Strategies

Extending the notion of the strategy defined in (4), we can
refine the definition of a strategy to exploit problem structure
commonly found in many robotics problems — separability.
In physical planning problems, it frequently occurs that sets
of logical variables are used to model repeated, but spatially
or temporally distinct, phenomena. For example, in the ob-
stacle avoidance problem outlined in [4], a set of 4 logical
variables is used to encode each obstacle; except through
the optimal continuous variables, these logical variables are
completely decoupled and do not appear together in common
constraints. Similar structure can be found in multi-surface
contact planning (variable sets per surface), piecewise-affine
dynamics (variable sets per dynamics region), and so on.

We formalize this notion by considering problems in which
the underlying mixed logical constraints can be represented as
a conjunction of Boolean formulas,

F1 ∧ F2 ∧ ... ∧ F`,
where Fi is a distinct sub-formula of literals involving con-
tinuous and logical variables, and each integer variable δj is
associated with only one, sub-formula Fi. Again, for illustra-
tion, the constraints in [4] can be represented in this form,
where each sub-formula Fi encodes that the robot position
must lie outside of a single obstacle at a single timestep.

Suppose the mixed logical constraints of MICP P(θ) may
be expressed in this manner. Then, the strategy S(θ) can be de-
composed further into sub-formula strategies S1(θ), . . . ,S`(θ),
without loss of generality, since trivially the value of variable
δj can be determined solely from the logical value of its parent
sub-formula Fi and the continuous solution x∗.

The practical advantages of this view are twofold: first,
since the number of possible strategies can grow exponentially
with the number of integer variables |δ|, decomposing the
strategies in this way results in smaller sub-formulas which
take on far fewer values individually than the total problem
strategy S. Second, many of the individual formulas are
themselves repeated (e.g. multiple obstacles, but of various
sizes and locations); decomposing the problem strategy into
sub-formulas exposes this structure as well. Taken together,
these advantages of strategy decomposition greatly help the
strategy classifier proposed below, since now the number of
possible classes becomes much lower, and a single classifier

Algorithm 1 MLOPT Offline

Require: Batch of training data {θi}i=1,...,T , problem P(θ)
1: Initialize strategy dictionary S ← {}, train set D ← {}
2: k ← 0
3: for each θi do
4: Solve P(θ)
5: if P(θ) is feasible then
6: Construct optimal strategy S∗

7: if S∗ not in S then
8: Add S∗ to S, assign class k
9: k ← k + 1

10: end if
11: Assign training label yi of strategy class S∗

12: Add (θi, yi) to D
13: end if
14: end for
15: Choose network weights φ which minimize the cross-entropy

loss L(ĥφ(θi), yi)i=1,...,T via stochastic gradient descent
16: return ĥφ, S

can be trained for all sub-formulas of identical structure, which
in effect augments the training dataset.

We further note that this approach has diminishing returns;
since, at runtime, a set of sub-formula strategies Si must
be recombined to create the total problem strategy S , any
machine learning-based algorithm must now produce ` correct
predictions to reconstruct the globally optimal strategy S.
Thus, when choosing how to decompose the strategy, there
is a practical trade-off between the number of possible assign-
ments per sub-formula, and the number of total sub-formula
assignments which must be predicted overall.

C. Algorithm Overview

We now detail our proposed procedure for training and
deploying a strategy classifier. The offline portion of MLOPT
is described in Algorithm 1. In this offline phase, the opti-
mization problem P(θ) is solved for a batch of sample points
θi sampled from a parameter distribution p(Θ). We maintain a
dictionary S of logically unique strategies encountered in the
dataset, and label each point θi with the index yi of its strategy
class S∗. Finally, we use stochastic gradient descent to choose
neural network weights φ which approximately minimize a
cross-entropy loss over the training set.

Algorithm 2 MLOPT Online
Require: Problem parameters θ, strategy dictionary S, trained neural

network ĥφ, nevals

1: Compute class scores ĥφ(θ)
2: Identify top nevals-scoring strategies in S
3: for j = 1, . . . , nevals do
4: if P(θ) is feasible for strategy S(j) then
5: return Feasible solution (x∗, δ∗)
6: end if
7: end for
8: return failure

As detailed in Algorithm 2, at runtime, we use the provided
ĥφ and S online to solve the MICP given new task parameters.
Provided a new task specification θ, we then compute a
forward pass ĥφ(θ) and identify the strategies with the highest
nevals scores. For each candidate strategy, we fix the integer

variaxbles δ to an optimal assignment δ∗ for the strategy
class. We then solve the resulting convex problem to find
optimal continuous values x∗. If a feasible solution is found,
the algorithm terminates.

D. Feasible Solutions
We note that MLOPT forgoes the optimality guarantees

provided by branch-and-bound for finding the globally optimal
solution for an MICP. However, we emphasize that in the
context of robotics, controllers are often deployed in a receding
horizon fashion wherein the controller is executed multiple
times through a task or trajectory. Thus, some suboptimality
in relatively rare instances can be tolerated if fast execution
enables safe behavior and, in some cases, a well-tuned terminal
cost can also account for long horizon behavior. Moreover,
as we show next, in practice MLOPT provides better qual-
ity solutions within a handful of strategy evaluations than
the equivalent of branch-and-bound terminated after a fixed
number of iterations.

IV. NUMERICAL EXPERIMENTS

In this section, we numerically validate our approach on
three benchmark problems in robotics: the control of an
underactuated cart-pole with multiple contacts, the robot mo-
tion planning problem, and dexterous manipulation for task-
specific grasping. These problems demonstrate the rich set of
combinatorial constraints that arise in robotics and demon-
strate the broad applicability of MLOPT in handling these
constraints. Table I provides an overview of the three systems.

System nx nδ np

Free-Flyer 34 160 20
Cart-Pole 74 40 13

Manipulator 1092 30 12

TABLE I: Overview of system dimensions in numerical experiments.

A. Implementation Details
For each system, we first generate a dataset by sampling

θ from p(Θ), until a sufficient number of problems P(θ) are
solved. For each system, we separate 90% of the problems for
training and the remaining 10% for evaluation. For our neural
network architecture, we implemented a standard feedforward
network with three layers. We use 32 neurons per layer for the
cart-pole and dextrous manipulation examples and 128 neurons
per layer for the free-flying space robot example. The ReLU
activation function was used for each network.

We implemented each example in this section in a library
written in Julia 1.2 and the PyTorch machine learning
library [29] to implement our neural network models with the
ADAM optimizer for training. The mixed-integer convex prob-
lems were written using the JuMP modeling framework [30]
and solved using Gurobi [11] and Mosek [12]. We further
benchmark MLOPT against Gurobi, Mosek, and the regression
framework from [23]. For all problems except the grasp
optimization, we disable presolve and multithreading to better
approximate the computational resources of an embedded pro-
cessor. The network architecture chosen for the regressor was

identical to the strategy classifier, updated with the appropriate
number of integer outputs. The code for our algorithm is
available at https://github.com/StanfordASL/mlopt-micp.

B. Cart-Pole with Soft Walls
For our first system, we consider problems in robotics that

deal with planning multi-contact behaviors. While a myriad
of approaches have been proposed for planning open-loop
plans for systems with contact or discontinuities, developing
controllers that can operate online to quickly react to distur-
bances has proven challenging. Here, we consider the cart-
pole with contact system, a well-known underactuated, multi-
contact problem in robot control [5, 31]. As depicted in Figure
4, the system consists of a cart and pole and the optimal control
problem entails regulating the system to a goal xg:

minimize ‖xN − xg‖2 +

N−1∑
τ=0

‖xτ − xg‖2 + ‖uτ‖2
subject to xt+1 = Axt +But +Gst, t = 0, ..., N − 1

umin ≤ ut ≤ umax, t = 0, ..., N − 1

st =

{
κλt + νγt if λt ≥ 0 and κλt + νγt ≥ 0

0, otherwise
t = 0, ..., N − 1

xmin ≤ xt ≤ xmax, t = 0, ..., N
x0 = xinit,

(5)
where the state xt ∈ R4 consists of the position of the cart
x1t , angle of the pole x2t , and their derivatives x3t and x4t ,
respectively. The force applied to the cart is ut ∈ R and
st ∈ R2 are the contact forces imparted by the two walls.
The relative distance of the tip of the pole with respect to the
left and right walls is λt ∈ R2 and the time derivative of this
relative distance γt ∈ R2. Finally, κ and ν are parameters
associated with the soft contact model used.

As the contact force st becomes active only when the tip
of the pole makes contact with either wall, we must introduce
binary variables to enforce the logical constraints given in (5).
We first define the the relative distance of the tip of the pole
with respect to the left and right walls as λ1t = −x1t + lx2t −d
and λ2t = −x1t − lx2t − d, respectively. The time derivatives
of the relative distance are denoted γ1t = −x3t + lx4t and
γ2t = −x3t − lx4t . Using values from xmin and xmax, we can
derive explicit upper and lower bounds λ1min ≤ λ1t ≤ λ1max
and λ2min ≤ λ2t ≤ λ2max. Similarly, there exist upper and lower
bounds γ1min ≤ γ1t ≤ γ1max and γ2min ≤ γ2t ≤ γ2max. For further
details, we refer the reader to [6] for a thorough derivation of
the system constraints.

To constrain contact forces st to become active only when
the pole tip strikes a wall, we introduce four binary variables
δit, i = 1, ..., 4. Using the formulation from [28], we enforce
the following constraints for k = 1, 2:

λkmin(1− δ(2k−1)
t) ≤ λkt ≤ λkmaxδ

(2k−1)
t

skmin(1− δ(2k)t) ≤ κλkt + νγkt ≤ skmaxδ
(2k)
t

Finally, we impose constraints on st, for k = 1, 2:

νγkmax(λkt − 1) ≤ skt − κλkt − νγkt ≤ skmin(δ2kt − 1)

There are then a total of 4N integer variables in this MIQP.

https://github.com/StanfordASL/mlopt-micp

Gurobi MLOPT Regressor
0

20

40

60

80

100
Pe

rc
en

t S
uc

ce
ss

(a) Success percentage

Gurobi MLOPT Regressor

2

1

0

lo
g(

Ti
m

e)
 [s

]

(b) Solution times

Gurobi MLOPT Regressor
0

1

2

3

lo
g(

Q
Ps

 S
ol

ve
d)

(c) Num. QPs solved

Gurobi MLOPT Regressor
100

150

200

250

300

350

R
el

at
iv

e
C

os
t [

%
]

(d) Normalized cost [%]

Fig. 3: Simulation results for the cart-pole system demonstrate the near-total feasibility for solutions of MLOPT without sacrificing optimality.

x1t

x2t

Fig. 4: 4D cart-pole with wall system.

1) Results: In this work, the value for Nobs and N were
chosen as 4 and 10, yielding 40 total integer variables. The
parameter space θ ∈ R13 consists of the initial state x0 ∈ R4,
goal state xg ∈ R4, the relative distance of the tip to the
left and right walls (λ10, λ

2
0) ∈ R2 for the initial state and

(λ1g, λ
2
g) ∈ R2 for the goal state, and the distance ||x0−xg||2.

Figure 3 shows the results for the cart-pole system over a
test set of ten thousand problems. Figure 3a reports the percent
of feasible solutions found over the test set (note that all
problems are feasible, so Gurobi reports 100% here). Among
solutions for each method that were feasible, Figure 3b reports
the solution time for the forward pass of the network plus
computation time for QPs solved before a feasible solution
was found. Figures 3c and 3d report the number of convex
relaxations solved per problem and the cost of the feasible
solution relative to the globally optimal solution.

We see that cart-pole system outperforms Gurobi and the
regressor benchmarks. For this system, MLOPT finds feasible
solutions for 99% of the problems compared to only 58% for
the regressor. Moreover, we see in Figure 3c that MLOPT
is able to find a feasible solution after one QP solve for
95% of its feasible problems compared to the average value
of 50 QP solves required for Gurobi’s branch-and-bound
implementation. Note that the regressor always requires one
QP solve as only one candidate solution is considered for every
forward pass. However, this solution speed-up for MLOPT
does not come at the cost of optimality. As shown in Figure
3d, 99% of the feasible solutions found by MLOPT are also
the globally optimal solution for that problem.

C. Free-Flying Space Robots

Motion planning in the presence of obstacles is a funda-
mental problem in robotics [32]. Here, we consider a free-
flying spacecraft robot in the plane that must navigate through
a workspace with multiple obstacles. In this section, we show
how using the task-specific strategies approach discussed in
III-B make this problem tractable to solve with MLOPT.

We denote the position as pt ∈ R2 and velocity as vt in the
2-dimensional plane. The state is therefore xt = (pt, vt). The
input ut ∈ R2 consists of the forces produced by the thruster.
Letting Xsafe be the free space which the robot must navigate
through, the optimal control problem is to plan a collision free
trajectory towards a goal state xg [33]:

minimize ‖xN − xg‖2 +

N−1∑
τ=0

‖xτ − xg‖2 + ‖uτ‖2
subject to xt+1 = Axt +But, t = 0, ..., N − 1

||ut||2 ≤ umax, t = 0, ..., N − 1
xmin ≤ xt ≤ xmax, t = 0, ..., N
x0 = xinit
xt ∈ Xsafe, t = 0, ..., N,

(6)

Here, the crucial constraint distinguishing (6) from a typical
optimal control problem is the safety constraint xt ∈ Xsafe.
In the presence of obstacles, this constraint is typically highly
non-convex and requires a global combinatorial search to solve
this problem. One class of methods used to solve (6) entails
posing it as an MICP and using binary variables to enforce
collision-avoidance constraints [34, 35]. Given a set of Nobs
obstacles, the workspace is decomposed into keep-in and keep-
out polytope regions, where binary variables are then used to
enforce collision avoidance with the keep-out regions.

To simplify the presentation, we consider axis-aligned rect-
angular obstacles, but the framework can be generalized to any
obstacles represented as convex polygons [3]. We represent
an obstacle m with the coordinates of the rectangle for
the lower-left hand corner (xmmin, y

m
min) and upper right-hand

corner (xmmax, y
m
max). Given the state xt, the collision avoidance

constraints with respect to obstacle m are:

xmmax +Mδm,1t ≤ x1t ≤ xmmin +Mδm,2t (7)

ymmax +Mδm,3t ≤ x2t ≤ ymmin +Mδm,4t (8)

For an obstacle set of cardinality Nobs, each obstacle thus
requires four integers variables δm,it at each time step. Because
the robot must be in violation of at least one of the keep-out
constraints, δm,it = 1 corresponds to being on one side of face
i of the rectangle. A final constraint is enforced to ensure that
the robot does not collide with the obstacle:

4∑
i=1

δm,it ≤ 3, m = 1, ..., Nobs, t = 1, ..., N. (9)

Due to the `2-norm constraints imposed on the thruster forces
ut, this problem is an MIQCQP with 4NobsN variables.

Gurobi MLOPT N-MLOPT Regressor
0

20

40

60

80

100

Pe
rc

en
t S

uc
ce

ss

(a) Success percentage

Gurobi MLOPT N-MLOPT Regressor

2.5

2.0

1.5

1.0

0.5

lo
g(

Ti
m

e)
 [s

]

(b) Solution times

Gurobi MLOPT N-MLOPT Regressor
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

lo
g(

Q
C

Q
Ps

 S
ol

ve
d)

(c) Num. QCQPs solved

Gurobi MLOPT N-MLOPT Regressor
100

200

300

400

500

600

R
el

at
iv

e
C

os
t [

%
]

(d) Normalized cost [%]

Fig. 5: Simulation results for the free-flyer show how task-specific strategies are critical for enabling the use of MLOPT for this system.

1) Task-Specific Strategy Decomposition: We show here
how the the underlying structure of the obstacle avoidance
constraints can be leveraged for effectively training a strategy
classifier, as discussed in III-B. We note that each binary
variable depends only on the three other variables associated
with the same obstacle at the same timestep. Thus, we can
decompose the strategy on a per-obstacle basis. Thus, each
strategy S(θ;m) is comprised of a tuple (δm,∗, T mM), where
δm,∗ and T mM are defined as in (4) for only the integer
assignments and big-M constraints for obstacle m.

Rather than training Nobs separate strategy classifiers for
each S(θ;m), we train a single classifier using θ and a one-
hot vector to encode which obstacle strategy is being queried.

2) Results: In this work, the horizon N was set to 5 and
the number of obstacles Nobs to 8, yielding 160 total integer
variables. The parameter space θ ∈ R24 for this problem
included the initial condition x0 ∈ R4 and coordinates
(xmmin, x

m
max, y

m
min, y

m
max) ∈ R4 of each of the four obstacles

m = 1, . . . , 4, and a one-hot encoding of the obstacle index.
Figure 5 shows the results over the ten thousand test

problems. The trained MLOPT classifier is compared against
Gurobi and the regressor. We also benchmark against a naı̈ve
implementation of MLOPT (denoted N-MLOPT) that does
not decompose the strategies over each obstacle separately.
The number of strategies observed in the training set for
naı̈ve MLOPT was approximately 81 thousand, whereas the
task-specific strategy decomposition resulted in 516 strategies.
As shown in Figure 5a, MLOPT finds feasible solutions for
92% of the training set compared to 18% for the regressor.
Crucially, we see that the naı̈ve implementation of MLOPT
finds feasible solutions for only 35% of the test set. MLOPT
is on average also able to find solutions faster than Gurobi and
naı̈ve MLOPT. Figure 5c shows that this faster computation
time is achieved by MLOPT having to solve only one QCQP
for 85% of the test problems. Once again, MLOPT is still able
to find high quality feasible solutions and finds the optimal
solution for 92% of the time as illustrated in Figure 5d.

For this system, we see that the task-specific strategy
approach was required in enabling MLOPT to reliably find
solutions for the MIQCQPs. The naı̈ve MLOPT finds feasi-
ble solutions for 56% fewer problems than the task-specific
MLOPT. This gap is likely attributable to the fact that the
number of strategies the naı̈ve MLOPT has to consider is
approximately 81 thousand compared to 516 for the task-
specific MLOPT. Thus, the task-specific strategies also allow

for better supervision of the classifier as there are more labels
available per class.

D. Task-Oriented Optimization of Dexterous Grasps

As a final system, we consider the problem of grasp
optimization for task-specific dexterous grasps. Practically,
during dexterous manipulation (especially with environmen-
tal contact) the actual trajectory of the object can diverge
significantly from the planned trajectory; further, high-level
tasks (such as placing a peg into a hole) may require multiple
grasps for various subtasks. Thus, we are interested in enabling
online computation of optimal dexterous grasps for both fast
replanning and regrasping.

While task-agnostic grasp optimization has been well-
studied [36], the problem choosing and even evaluating dex-
terous grasps for specific tasks (such as pushing or rotating
objects, tool use) is still of considerable interest. While works
such as [37, 38] have proposed metrics which can be used
to evaluate grasps for various tasks, they leave the problem
choosing grasps which optimize these metrics unstudied.

Fig. 6: Schematic of dexterous grasping problem. Here, a robotic
hand with n = 5 fingers chooses from M potential contact points to
optimize a task-specific grasp metric.

Here we consider the problem of choosing n contact
points for a multifingered robot hand from a set of points
p1, ..., pM ∈ R3, sampled from the object surface in order
to optimize the task-oriented grasp metric proposed in [38].
Figure 7 shows a schematic of the proposed problem. We
model the contacts between the fingers and the object as
point contacts with friction. Thus, at each candidate point,
if selected, a finger could apply a local contact force fi =
(fxi , f

y
i , f

z
i) ∈ R3, where the local coordinate frame has the

x- and y-axes tangent to the surface, and the z-axis along the
inward surface normal. Intuitively, fzi is the component of the
contact force which is normal to the object surface, and fxi , f

y
i

are its tangential components.
Under this contact model, the contact force f (i) must lie

in the friction cone K(i), which constrains the tangential
component of the contact force to be less than the friction
coefficient µi times the normal force. We can further define
the grasp matrices G1, . . . , GM , where

Gi =

[
R(i)(

p(i)
)×
R(i)

]
,

R(i) ∈ SO(3) is the rotation matrix relating the local frame
of point i to the global frame, and, for a vector v ∈ R3, (v)×

(v)× =

 0 −v3 v2
v3 0 −v1
−v2 v1 0


is the skew-symmetric matrix such that for w ∈ R3,

(v)×w = v × w.

We can now express the wrench applied to the object by f (i)

as Gif (i), and the total wrench (from all contact forces) as
Gf , where G = [G1, . . . , GM].

However, contact forces may not be applied at all candidate
points. To this end, we introduce the logical variables δi ∈
{0, 1}, with δi = 1 iff point pi is selected for the grasp. Thus,
we enforce the constraint

fzi ≤ δi,

which constrains the normal forces of all unused grasps to be
zero, and to be bounded by unity otherwise. Thus, for a choice
of grasps δ = (δ1, ..., δM), the set of possible object wrenches
is defined as

W(δ) = {Gf | f ∈ Ki, fzi ≤ δi} .

A common task-agnostic metric for grasp quality is the
radius α of the largest ball which can be inscribed in W(δ),

µg(δ) = sup {α ≥ 0 | Bα ⊂ W(δ)} ,

where Bα denotes the ball centered at the origin of radius α.
Intuitively, this gives the norm of the smallest applied wrench,
in any direction, that lies on the boundary of W(δ), which we
denote as ∂W . This can be understood as a measure of the
grasp’s general “control authority” over the body. Of course,
few tasks require equal wrenches to be generated in every
direction, so for many tasks this metric is over-conservative;
optimal grasps for this metric are usually enveloping grasps
which may be inappropriate for tasks such as pushing.

In contrast, in [38], the authors propose describing tasks
using normalized task wrenches F̂t, which are specific direc-
tions in wrench space that characterize the applied wrenches
necessary to complete the task. For instance, if the desired task
is to push the object along the +x-axis, then this task could
be described using F̂ = (1, 0, 0, 0, 0, 0), and so on. Thus, for

a task described by a single wrench, the grasp quality can be
defined as

µ1(δ, F̂t) = sup
{
αt ≥ 0 | αtF̂t ∈ ∂W(δ)

}
.

For a given grasp δ, this metric can be easily computed by
solving a second-order cone program (SOCP).

However, most tasks are best described by a set of wrenches
which must be generated, rather than a single direction in
wrench space. Thus, the authors propose describing this set as
the positive span of T task vectors; in turn, the grasp metric
is defined as

µ(δ, F̂1, . . . , F̂T) =
T∑
t=1

wtαt,

where wi ≥ 0 are the relative weightings of the task vectors,
and αt = µ1(δ, F̂t). This can, in turn, be computed by solving
T SOCPs. This corresponds to the volume of the polyhedron
defined by the vectors wtαtF̂t.

We seek δ∗ which maximizes this grasp metric, which can
be written as a mixed-integer SOCP (MISOCP):

maximize
T∑
t=1

wtαt

subject to Gf t = αtF̂t, t = 1, . . . , T
f ti ∈ K(i), i = 1, . . .M, t = 1, . . . , T

fz,ti ≤ δi, i = 1, . . . ,M, t = 1, . . . , T
M∑
i=1

δi ≤ n

δ ∈ {0, 1}M

(10)

1) Results: For our numerical experiments, we aimed to
learn strategies for a single rigid body and set of candidate
points which generalized across task weightings w. We set
the number of candidate grasp point M equal to 30 and plan
grasps for a four finger manipulator n = 4.

For training, we collected a set of 4,500 problems, using
task vectors F̂t which corresponded to the basis vectors ±ei ∈
R6 for i = 1, . . . , 6. Since these task vectors span R6, task
weightings w with all wi > 0 correspond to generating force
closure grasps. We generated task weightings wi by calculating
the softmax of a vector sampled from a multivariate normal
distribution with covariance matrix Σ = 10I.

Figures 8 and 9 show the results for this system. Note
that because αt can be set to 0 i.e., resist a zero wrench,
all grasp mode sequences with four contacts are feasible.
However, we see in Figure 8a that the regressor can report
infeasible solutions if it guesses more than four active binary

W
<latexit sha1_base64="sd+iVzwavP6tMk0XI2E+m0uk9j0=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclUQEXRbduKxgH5CGMplO2qGTTJi5EUroZ7hxoYhbv8adf+OkzUJbDwwczrmXOfeEqRQGXffbWVvf2NzaruxUd/f2Dw5rR8cdozLNeJspqXQvpIZLkfA2CpS8l2pO41Dybji5K/zuE9dGqOQRpykPYjpKRCQYRSv5/ZjimFGZd2eDWt1tuHOQVeKVpA4lWoPaV3+oWBbzBJmkxviem2KQU42CST6r9jPDU8omdMR9SxMacxPk88gzcm6VIYmUti9BMld/b+Q0NmYah3ayiGiWvUL8z/MzjG6CXCRphjxhi4+iTBJUpLifDIXmDOXUEsq0sFkJG1NNGdqWqrYEb/nkVdK5bHhuw3u4qjdvyzoqcApncAEeXEMT7qEFbWCg4Ble4c1B58V5dz4Wo2tOuXMCf+B8/gCRvJFt</latexit><latexit sha1_base64="sd+iVzwavP6tMk0XI2E+m0uk9j0=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclUQEXRbduKxgH5CGMplO2qGTTJi5EUroZ7hxoYhbv8adf+OkzUJbDwwczrmXOfeEqRQGXffbWVvf2NzaruxUd/f2Dw5rR8cdozLNeJspqXQvpIZLkfA2CpS8l2pO41Dybji5K/zuE9dGqOQRpykPYjpKRCQYRSv5/ZjimFGZd2eDWt1tuHOQVeKVpA4lWoPaV3+oWBbzBJmkxviem2KQU42CST6r9jPDU8omdMR9SxMacxPk88gzcm6VIYmUti9BMld/b+Q0NmYah3ayiGiWvUL8z/MzjG6CXCRphjxhi4+iTBJUpLifDIXmDOXUEsq0sFkJG1NNGdqWqrYEb/nkVdK5bHhuw3u4qjdvyzoqcApncAEeXEMT7qEFbWCg4Ble4c1B58V5dz4Wo2tOuXMCf+B8/gCRvJFt</latexit><latexit sha1_base64="sd+iVzwavP6tMk0XI2E+m0uk9j0=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclUQEXRbduKxgH5CGMplO2qGTTJi5EUroZ7hxoYhbv8adf+OkzUJbDwwczrmXOfeEqRQGXffbWVvf2NzaruxUd/f2Dw5rR8cdozLNeJspqXQvpIZLkfA2CpS8l2pO41Dybji5K/zuE9dGqOQRpykPYjpKRCQYRSv5/ZjimFGZd2eDWt1tuHOQVeKVpA4lWoPaV3+oWBbzBJmkxviem2KQU42CST6r9jPDU8omdMR9SxMacxPk88gzcm6VIYmUti9BMld/b+Q0NmYah3ayiGiWvUL8z/MzjG6CXCRphjxhi4+iTBJUpLifDIXmDOXUEsq0sFkJG1NNGdqWqrYEb/nkVdK5bHhuw3u4qjdvyzoqcApncAEeXEMT7qEFbWCg4Ble4c1B58V5dz4Wo2tOuXMCf+B8/gCRvJFt</latexit><latexit sha1_base64="sd+iVzwavP6tMk0XI2E+m0uk9j0=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclUQEXRbduKxgH5CGMplO2qGTTJi5EUroZ7hxoYhbv8adf+OkzUJbDwwczrmXOfeEqRQGXffbWVvf2NzaruxUd/f2Dw5rR8cdozLNeJspqXQvpIZLkfA2CpS8l2pO41Dybji5K/zuE9dGqOQRpykPYjpKRCQYRSv5/ZjimFGZd2eDWt1tuHOQVeKVpA4lWoPaV3+oWBbzBJmkxviem2KQU42CST6r9jPDU8omdMR9SxMacxPk88gzcm6VIYmUti9BMld/b+Q0NmYah3ayiGiWvUL8z/MzjG6CXCRphjxhi4+iTBJUpLifDIXmDOXUEsq0sFkJG1NNGdqWqrYEb/nkVdK5bHhuw3u4qjdvyzoqcApncAEeXEMT7qEFbWCg4Ble4c1B58V5dz4Wo2tOuXMCf+B8/gCRvJFt</latexit>

↵1F̂1
<latexit sha1_base64="axbRnBk58yZZszsnpz8TA71kFiQ=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqmRE0GVREJcV7AOaEG6mk3bo5MHMRCwhv+LGhSJu/RF3/o3TNgttPXDhcM693HtPkAqutON8W5W19Y3Nrep2bWd3b//APqx3VZJJyjo0EYnsB6CY4DHraK4F66eSQRQI1gsmNzO/98ik4kn8oKcp8yIYxTzkFLSRfLvugkjH4BPsjkHnt4VPfLvhNJ058CohJWmgEm3f/nKHCc0iFmsqQKkBcVLt5SA1p4IVNTdTLAU6gREbGBpDxJSXz28v8KlRhjhMpKlY47n6eyKHSKlpFJjOCPRYLXsz8T9vkOnwyst5nGaaxXSxKMwE1gmeBYGHXDKqxdQQoJKbWzEdgwSqTVw1EwJZfnmVdM+bxGmS+4tG67qMo4qO0Qk6QwRdoha6Q23UQRQ9oWf0it6swnqx3q2PRWvFKmeO0B9Ynz8kspPY</latexit><latexit sha1_base64="axbRnBk58yZZszsnpz8TA71kFiQ=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqmRE0GVREJcV7AOaEG6mk3bo5MHMRCwhv+LGhSJu/RF3/o3TNgttPXDhcM693HtPkAqutON8W5W19Y3Nrep2bWd3b//APqx3VZJJyjo0EYnsB6CY4DHraK4F66eSQRQI1gsmNzO/98ik4kn8oKcp8yIYxTzkFLSRfLvugkjH4BPsjkHnt4VPfLvhNJ058CohJWmgEm3f/nKHCc0iFmsqQKkBcVLt5SA1p4IVNTdTLAU6gREbGBpDxJSXz28v8KlRhjhMpKlY47n6eyKHSKlpFJjOCPRYLXsz8T9vkOnwyst5nGaaxXSxKMwE1gmeBYGHXDKqxdQQoJKbWzEdgwSqTVw1EwJZfnmVdM+bxGmS+4tG67qMo4qO0Qk6QwRdoha6Q23UQRQ9oWf0it6swnqx3q2PRWvFKmeO0B9Ynz8kspPY</latexit><latexit sha1_base64="axbRnBk58yZZszsnpz8TA71kFiQ=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqmRE0GVREJcV7AOaEG6mk3bo5MHMRCwhv+LGhSJu/RF3/o3TNgttPXDhcM693HtPkAqutON8W5W19Y3Nrep2bWd3b//APqx3VZJJyjo0EYnsB6CY4DHraK4F66eSQRQI1gsmNzO/98ik4kn8oKcp8yIYxTzkFLSRfLvugkjH4BPsjkHnt4VPfLvhNJ058CohJWmgEm3f/nKHCc0iFmsqQKkBcVLt5SA1p4IVNTdTLAU6gREbGBpDxJSXz28v8KlRhjhMpKlY47n6eyKHSKlpFJjOCPRYLXsz8T9vkOnwyst5nGaaxXSxKMwE1gmeBYGHXDKqxdQQoJKbWzEdgwSqTVw1EwJZfnmVdM+bxGmS+4tG67qMo4qO0Qk6QwRdoha6Q23UQRQ9oWf0it6swnqx3q2PRWvFKmeO0B9Ynz8kspPY</latexit><latexit sha1_base64="axbRnBk58yZZszsnpz8TA71kFiQ=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqmRE0GVREJcV7AOaEG6mk3bo5MHMRCwhv+LGhSJu/RF3/o3TNgttPXDhcM693HtPkAqutON8W5W19Y3Nrep2bWd3b//APqx3VZJJyjo0EYnsB6CY4DHraK4F66eSQRQI1gsmNzO/98ik4kn8oKcp8yIYxTzkFLSRfLvugkjH4BPsjkHnt4VPfLvhNJ058CohJWmgEm3f/nKHCc0iFmsqQKkBcVLt5SA1p4IVNTdTLAU6gREbGBpDxJSXz28v8KlRhjhMpKlY47n6eyKHSKlpFJjOCPRYLXsz8T9vkOnwyst5nGaaxXSxKMwE1gmeBYGHXDKqxdQQoJKbWzEdgwSqTVw1EwJZfnmVdM+bxGmS+4tG67qMo4qO0Qk6QwRdoha6Q23UQRQ9oWf0it6swnqx3q2PRWvFKmeO0B9Ynz8kspPY</latexit>

O
<latexit sha1_base64="UaeGPGlSTEcc6/SnXGnxtlHbwMU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRizdbsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFS475frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ66LquVWvcVmp3eRxFOEETuEcPLiCGtxBHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHqBWM0w==</latexit><latexit sha1_base64="UaeGPGlSTEcc6/SnXGnxtlHbwMU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRizdbsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFS475frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ66LquVWvcVmp3eRxFOEETuEcPLiCGtxBHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHqBWM0w==</latexit><latexit sha1_base64="UaeGPGlSTEcc6/SnXGnxtlHbwMU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRizdbsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFS475frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ66LquVWvcVmp3eRxFOEETuEcPLiCGtxBHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHqBWM0w==</latexit><latexit sha1_base64="UaeGPGlSTEcc6/SnXGnxtlHbwMU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRizdbsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFS475frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ66LquVWvcVmp3eRxFOEETuEcPLiCGtxBHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHqBWM0w==</latexit>

↵2F̂2
<latexit sha1_base64="/qNJFMUwfW51XXycaF+nTcn8Mpc=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVJIi6LEoiMcK9gOaECbbTbN0swm7G7GE/hUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvzDhT2nG+rbX1jc2t7cpOdXdv/+DQPqp1VZpLQjsk5ansh6AoZ4J2NNOc9jNJIQk57YXjm5nfe6RSsVQ86ElG/QRGgkWMgDZSYNc84FkMQRN7Mejidho0A7vuNJw58CpxS1JHJdqB/eUNU5InVGjCQamB62TaL0BqRjidVr1c0QzIGEZ0YKiAhCq/mN8+xWdGGeIolaaExnP190QBiVKTJDSdCehYLXsz8T9vkOvoyi+YyHJNBVksinKOdYpnQeAhk5RoPjEEiGTmVkxikEC0iatqQnCXX14l3WbDdRru/UW9dV3GUUEn6BSdIxddoha6Q23UQQQ9oWf0it6sqfVivVsfi9Y1q5w5Rn9gff4AJ8ST2g==</latexit><latexit sha1_base64="/qNJFMUwfW51XXycaF+nTcn8Mpc=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVJIi6LEoiMcK9gOaECbbTbN0swm7G7GE/hUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvzDhT2nG+rbX1jc2t7cpOdXdv/+DQPqp1VZpLQjsk5ansh6AoZ4J2NNOc9jNJIQk57YXjm5nfe6RSsVQ86ElG/QRGgkWMgDZSYNc84FkMQRN7Mejidho0A7vuNJw58CpxS1JHJdqB/eUNU5InVGjCQamB62TaL0BqRjidVr1c0QzIGEZ0YKiAhCq/mN8+xWdGGeIolaaExnP190QBiVKTJDSdCehYLXsz8T9vkOvoyi+YyHJNBVksinKOdYpnQeAhk5RoPjEEiGTmVkxikEC0iatqQnCXX14l3WbDdRru/UW9dV3GUUEn6BSdIxddoha6Q23UQQQ9oWf0it6sqfVivVsfi9Y1q5w5Rn9gff4AJ8ST2g==</latexit><latexit sha1_base64="/qNJFMUwfW51XXycaF+nTcn8Mpc=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVJIi6LEoiMcK9gOaECbbTbN0swm7G7GE/hUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvzDhT2nG+rbX1jc2t7cpOdXdv/+DQPqp1VZpLQjsk5ansh6AoZ4J2NNOc9jNJIQk57YXjm5nfe6RSsVQ86ElG/QRGgkWMgDZSYNc84FkMQRN7Mejidho0A7vuNJw58CpxS1JHJdqB/eUNU5InVGjCQamB62TaL0BqRjidVr1c0QzIGEZ0YKiAhCq/mN8+xWdGGeIolaaExnP190QBiVKTJDSdCehYLXsz8T9vkOvoyi+YyHJNBVksinKOdYpnQeAhk5RoPjEEiGTmVkxikEC0iatqQnCXX14l3WbDdRru/UW9dV3GUUEn6BSdIxddoha6Q23UQQQ9oWf0it6sqfVivVsfi9Y1q5w5Rn9gff4AJ8ST2g==</latexit><latexit sha1_base64="/qNJFMUwfW51XXycaF+nTcn8Mpc=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVJIi6LEoiMcK9gOaECbbTbN0swm7G7GE/hUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvzDhT2nG+rbX1jc2t7cpOdXdv/+DQPqp1VZpLQjsk5ansh6AoZ4J2NNOc9jNJIQk57YXjm5nfe6RSsVQ86ElG/QRGgkWMgDZSYNc84FkMQRN7Mejidho0A7vuNJw58CpxS1JHJdqB/eUNU5InVGjCQamB62TaL0BqRjidVr1c0QzIGEZ0YKiAhCq/mN8+xWdGGeIolaaExnP190QBiVKTJDSdCehYLXsz8T9vkOvoyi+YyHJNBVksinKOdYpnQeAhk5RoPjEEiGTmVkxikEC0iatqQnCXX14l3WbDdRru/UW9dV3GUUEn6BSdIxddoha6Q23UQQQ9oWf0it6sqfVivVsfi9Y1q5w5Rn9gff4AJ8ST2g==</latexit>

Fig. 7: Schematic of task space W for a specific grasp δ, along with
the task vectors F̂t, their qualities αt, and the task polyhedron (shown
in dark gray). The posed problem corresponds to choosing δ∗ which
maximizes the (weighted) volume of the task polyhedron.

Mosek MLOPT Regressor
0

20

40

60

80

100
Pe

rc
en

t S
uc

ce
ss

(a) Success percentage

Mosek MLOPT Regressor

2

1

0

1

lo
g(

Ti
m

e)
 [s

]

(b) Solution times

Mosek MLOPT Regressor
0.0

0.5

1.0

1.5

2.0

2.5

lo
g(

SO
C

Ps
 S

ol
ve

d)

(c) Num. SOCPs solved

Mosek MLOPT Regressor

0

25

50

75

100R
el

at
iv

e
C

os
t [

%
]

(d) Normalized cost [%]

Fig. 8: Simulation results for manipulation example. MLOPT reduces solution times for (10) between 2–3 orders of magnitude.

0 200 400 600 800 1000
Problem Index (Sorted by Cost)

0.0

0.2

0.4

0.6

0.8

1.0

Co
st

 R
at

io

Cost Ratios [1 Solve]

optimal
classifier
regressor*
mode
random

Fig. 9: The optimality gap plotted across 1000 problems in the
training dataset for grasp modes chosen by MLOPT, regressor, the
most common mode seen in the training data, and at random.

assignments. Although all MLOPT candidate strategies are
feasible, we see in Figure 9 that maximizing the grasp metric is
nonetheless challenging for the regressor and simple heuristics.
Thus, Figure 8d illustrates that the feasible solution found by
MLOPT is also the globally optimal grasp for 99% of the
problems (note that the scale is inverted in this figure as the
MISOCP is a maximization problem).

Figure 10 shows the grasps selected by MLOPT for some
representative task weightings. Intuitively, the highest-scoring
grasp when all weight is placed on creating force in the +y
direction uses the four points with minimal y values. Similarly,
the top-scoring grasp for creating a moment about the +z-axis
uses points on the radius of the cylinder, maximizing their
moment arm from the center of mass. Finally, in the case of
equal weighting for all directions, which approximates the un-
weighted grasp ellipsoid studied in [37], the top-scoring grasp
qualitatively resembles an “enveloping” grasp, selecting points
which are somewhat evenly distributed about the cylinder.

Crucially, this ability to find the globally optimal solution
for the majority of problems after solving only one SOCP
relaxation leads to solutions in tens of milliseconds rather than
the seconds needed by Mosek. On average, MLOPT is able to
accelerate finding solutions for this problem by two to three
orders of magnitude, making solving MISOCPs in real-time
with high-quality solutions tractable.

V. CONCLUSION

In this paper, we introduced a machine learning technique to
accelerate the solution of online MICPs arising in robotics. We

extended the MLOPT framework [1, 2] to exploit the MICP
structure arising in practical applications.We discarded redun-
dant strategies corresponding to equivalent globally optimal
solutions. In addition, we exploited the separable structure of
robotics problems to design task-specific strategies. Numerical
examples show that our approach achieves prediction accuracy
greater than 95% and suboptimality less than 10% when the
prediction is not correct in common robotics setups such as
a cart-pole system with walls, a free-flying space robot and
task-oriented grasps. We also obtained from 1 to 2 orders
of magnitude speedups compared to commercial solvers. The
proposed algorithm is, therefore, suitable to compute MICP
solutions in real-time with high reliability and speed.

Future contributions will focus on providing theoretical
guarantees on how to characterize the strategy space by
effectively sampling the parameter space of the problems and
to bound the optimality gap of feasible solutions found online.
Additionally, we would like to explore the application of
this proposed framework towards mixed-integer non-convex
problems appearing in robotics such as task planning.

ACKNOWLEDGEMENTS

We would like to thank Matteo Zallio, Benoit Landry, and
Joseph Lorenzetti for their discussions during this work.

REFERENCES

[1] D. Bertsimas and B. Stellato. (2019) Online mixed-integer
optimization in milliseconds. Available at https://arxiv.org/abs/
1907.02206.

[2] ——. (2019) The voice of optimization. Available at https://
arxiv.org/abs/1812.09991.

[3] B. Landry, R. Deits, P. R. Florence, and R. Tedrake, “Aggressive
quadrotor flight through cluttered environments using mixed
integer programming,” in Proc. IEEE Conf. on Robotics and
Automation, 2016.

[4] A. Richards, T. Schouwenaars, J. P. How, and E. Feron,
“Spacecraft trajectory planning with avoidance constraints using
mixed-integer linear programming,” AIAA Journal of Guidance,
Control, and Dynamics, vol. 25, no. 4, pp. 755–765, 2002.

[5] R. Deits, T. Koolen, and R. Tedrake, “LVIS: Learning from
value function intervals for contact-aware robot controllers,” in
Proc. IEEE Conf. on Robotics and Automation, 2019.

[6] T. Marcucci, R. Deits, M. Gabiccini, A. Bicchi, and R. Tedrake,
“Approximate hybrid model predictive control for multi-contact
push recovery in complex environments,” in Proc. IEEE Conf.
on Robotics and Automation, 2017.

[7] K. Hauser, S. Wang, and M. R. Cutkosky, “Efficient equilibrium
testing under adhesion and anisotropy using empirical contact
force models,” IEEE Transactions on Robotics, vol. 34, no. 5,
pp. 1157–1169, 2018.

https://arxiv.org/abs/1907.02206
https://arxiv.org/abs/1907.02206
https://arxiv.org/abs/1812.09991
https://arxiv.org/abs/1812.09991

x

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

y

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

z

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Force in +y direction

x

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

y

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

z

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Moment in +z direction

x

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

y

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

z

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) Volume maximization, wi = 1
12

Fig. 10: Visualization of grasps selected by network policy for various task weightings. The candidate points are shown in blue, with the
selected points shown in red. We note choosing a weighting wi = 1

12
for all i, which approximates the equally-weighted ellipsoid proposed

in [37], results in a reasonable “enveloping” grasp, as shown in (c).

[8] F. R. Hogan, E. R. Grau, and A. Rodriguez, “Reactive planar
manipulation with convex hybrid MPC,” in Proc. IEEE Conf.
on Robotics and Automation, 2018.

[9] J. Lee and S. Leyffer, Eds., Mixed Integer Nonlinear Program-
ming. Springer-Verlag, 2012.

[10] R. E. Bixby, “A brief history of linear and mixed-integer
programming computation,” Documenta Mathematica, 2012.

[11] Gurobi Optimization, LLC, Gurobi Optimizer Reference Man-
ual, 2020, available at http://www.gurobi.com.

[12] Mosek APS. The MOSEK optimization software. Available at
http://www.mosek.com.

[13] S. Boyd and L. Vandenberghe, Convex optimization. Cam-
bridge Univ. Press, 2004.

[14] S. W. Chen, T. Wang, N. Atanasov, V. Kumar, and M. Morari.
(2019) Large scale model predictive control with neural net-
works and primal active sets. Available at https://arxiv.org/pdf/
1910.10835.pdf.

[15] X. Zhang, M. Bujarbaruah, and F. Borrelli, “Safe and near-
optimal policy learning for model predictive control using
primal-dual neural networks,” in American Control Conference,
2019.

[16] G. Tang, W. Sun, and K. Hauser, “Learning trajectories for real-
time optimal control of quadrotors,” in IEEE/RSJ Int. Conf. on
Intelligent Robots & Systems, 2018.

[17] G. Tang and K. Hauser, “A data-driven indirect method for
nonlinear optimal control,” in IEEE/RSJ Int. Conf. on Intelligent
Robots & Systems, 2017.

[18] A. Agrawal, S. Barratt, S. Boyd, and B. Stellato. (2019)
Learning convex optimization control policies. Available at
https://arxiv.org/abs/1912.09529.

[19] Y. Bengio, A. Lodi, and A. Prouvost. (2018) Machine learn-
ing for combinatorial optimization: a methodological tour
d’Horizon.

[20] A. Lodi and G. Zarpellon, “On learning and branching: a
survey,” 2017.

[21] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song,
“Learning combinatorial optimization algorithms over graphs,”
in Conf. on Neural Information Processing Systems, 2017.

[22] H. He, H. Daumé III, and J. Eisner, “Learning to search in
branch-and-bound algorithms,” in Conf. on Neural Information
Processing Systems, 2014.

[23] D. Masti and A. Bemporad, “Learning binary warm starts
for multiparametric mixed-integer quadratic programming,” in
European Control Conference, 2019.

[24] A. Domahidi, M. N. Zeilinger, M. Morari, and C. N. Jones,

“Learning a feasible and stabilizing explicit model predictive
control law by robust optimization,” in Proc. IEEE Conf. on
Decision and Control, 2011.

[25] A. Achille, M. Lam, R. Tewari, A. Ravichandran, S. Maji,
C. Fowlkes, S. Soatto, and P. Perona, “Task2Vec: Task embed-
ding for meta-learning,” in IEEE Int. Conf. on Computer Vision,
2019.

[26] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen, “Ef-
ficient off-policy meta-reinforcement learning via probabilistic
context variables,” in Int. Conf. on Machine Learning, 2019.

[27] R. M. Karp, “On the computational complexity of combinatorial
problems,” Networks, vol. 5, no. 1, pp. 45–68, 1975.

[28] A. Bemporad and M. Morari, “Control of systems integrating
logic, dynamics, and constraints,” Automatica, 1999.

[29] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic
differentiation in PyTorch,” in Conf. on Neural Information
Processing Systems - Autodiff Workshop, 2017.

[30] I. Dunning, J. Huchette, and M. Lubin, “JuMP: A modeling
language for mathematical optimization,” SIAM Review, vol. 59,
no. 2, pp. 295–320, 2017.

[31] T. Marcucci and T. R. (2019) Warm start of mixed-integer pro-
grams for model predictive control of hybrid systems. Available
at https://arxiv.org/abs/1910.08251.

[32] S. M. LaValle, Planning Algorithms. Cambridge Univ. Press,
2006.

[33] R. Bonalli, A. Cauligi, A. Bylard, and M. Pavone, “GuSTO:
guaranteed sequential trajectory optimization via sequential
convex programming,” in Proc. IEEE Conf. on Robotics and
Automation, 2019.

[34] M. Mote, M. Egerstedt, E. Feron, A. Bylard, and M. Pavone,
“Collision-inclusive trajectory optimization for free-flying
spacecraft,” AIAA Journal of Guidance, Control, and Dynamics,
2020, in press.

[35] T. Schouwenaars, B. De Moor, E. Feron, and J. How, “Mixed
integer programming for multi-vehicle path planning,” in Euro-
pean Control Conference, 2001.

[36] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proc.
IEEE Conf. on Robotics and Automation, 1992.

[37] Z. Li and S. Sastry, “Task-oriented optimal grasping by multifin-
gered robot hands,” IEEE Journal of Robotics and Automation,
1988.

[38] R. Haschke, J. J. Steil, I. Steuwer, and H. Ritter, “Task-oriented
quality measures for dextrous grasping,” in Proc. IEEE Int.
Symp. on Comp. Intelligence in Robotics and Automation, 2005.

http://www.gurobi.com
http://www.mosek.com
https://arxiv.org/pdf/1910.10835.pdf
https://arxiv.org/pdf/1910.10835.pdf
https://arxiv.org/abs/1912.09529
https://arxiv.org/abs/1910.08251

	I Introduction
	I-A Statement of Contributions
	I-B Related Work

	II Technical Background
	II-A Mixed-Integer Convex Programs
	II-B Strategies for MICPs
	II-C Big-M Formulations of Mixed Logical Dynamical Systems
	II-D Uniqueness of Global Optima

	III Supervised Learning Strategies for MICPs
	III-A Pruning Redundant Strategies
	III-B Task-Specific Strategies
	III-C Algorithm Overview
	III-D Feasible Solutions

	IV Numerical Experiments
	IV-A Implementation Details
	IV-B Cart-Pole with Soft Walls
	IV-B1 Results

	IV-C Free-Flying Space Robots
	IV-C1 Task-Specific Strategy Decomposition
	IV-C2 Results

	IV-D Task-Oriented Optimization of Dexterous Grasps
	IV-D1 Results

	V Conclusion

