Multi-Robot Assembly Scheduling for the Lunar Crater
Radio Telescope on the Far-Side of the Moon

Preston Culbertson
Department of Mechanical Engineering
Stanford University
Stanford, CA, 94305
pculbertson @stanford.edu

Ashish Goel
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak GroveDrive, Pasadena
California 91109, USA
ashish.goel @jpl.nasa.gov

Saptarshi Bandyopadhyay
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak GroveDrive, Pasadena
California 91109, USA
saptarshi.bandyopadhyay @ jpl.nasa.gov

Patrick McGarey
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak GroveDrive, Pasadena
California 91109, USA
patrick.mcgarey @ jpl.nasa.gov

Mac Schwager
Department of Aeronautics and Astronautics
Stanford University
Stanford, CA, 94305
schwager @stanford.edu

Abstract—The Lunar Crater Radio Telescope (LCRT) is a pro-
posed ultra-long-wavelength radio telescope to be constructed
on the far side of the moon. The proposed telescope will be con-
structed by deploying a 1km wire mesh in a 3-5km crater using a
team of wall-climbing DuAxel robots. In this work, we consider
the problem of generating minimum-time assembly sequences
for LCRT, using realistic models of travel speed and lighting. We
pose the assembly sequencing problem as a mixed-integer linear
program (MILP), which we solve to global optimality using
commercial solvers. We present methods for modeling time-
varying travel and assembly times, based on variable lighting
conditions (including crater shadowing), and show how such
time-varying parameters can be incorporated into the MILP.
Finally, we present numerical studies of our method, showing
how makespan varies with the number of assembly robots.
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1. INTRODUCTION

The Lunar Crater Radio Telescope (LCRT) [[1] is a proposed
ultra-long wavelength radio telescope to be constructed on the
far side of the moon. This telescope would offer significant
advantages over Earth-based telescopes, including the ability
to observe the universe at wavelengths greater than 10 meters,
and shielding from radio interference (from both Earth-based
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Figure 1: Concept art of LCRT [1]] - Top View and Side View. Artist
Vladimir Vustyansky.

and solar sources) by the Moon itself. The LCRT, if con-
structed, would have a 1 kilometer diameter, and would in fact
be the largest filled-aperture telescope in the Solar System.
See Figure|[T|for a conceptual drawing of the telescope.

Such a telescope would allow scientists to observe the early
universe in the 10-50m wavelength band, which to date
has been inaccessible. These wavelengths are crucial to
understanding the cosmological “Dark Ages,” and are not
observable from Earth due to its ionosphere. Thus, LCRT
could enable scientific discoveries by providing observations
of the neutral intergalactic medium at wavelengths inaccessi-
ble with current technology.



‘ Earth

'a) Orbit

b) Lunar Landing Operations & B

Separation

Telescope & DuAxels
arrive attached

Telescope lander
to Crater Center

L 4

DuAxel stands to drive

DuAxel lander
to surface, then
deploys DuAxels

c) Lander unfolds, guide wires deployed d) DuAxel anchors, Axel descends,

links to guide wires

2o g

S

\\\ \\\ 1 L

Figure 2: Schematic [1]] of the Concept of Operations (ConOps) for
LCRT assembly. The LCRT payload will land in two parts; the first,
with telescope materials will be located in the crater center. The
second, containing the assembly rovers, will land on the crater rim
and serve as a depot. The rovers will proceed to retrieve structural
cables from the central lander, and anchor them to the crater rim.
Once all cables are anchored, the mesh will be deployed along the
cables. This paper studies the problem of assembly planning and
scheduling for this cable deployment process.

The proposed telescope consists of a 1km-diameter parabolic
reflector, which is constructed using a variable-thickness wire
mesh, suspended across a 3km-diameter crater. The mesh
will be designed such that the reflector maintains its shape
passively while suspended, at a variety of temperatures. Fig-
ure 2] provides a diagram of the LCRT Concept of Operations
(ConOps). To construct the telescope, a team of autonomous
DuAxel rovers [2], will be launched with the telescope
materials, and work to deploy the lift cables from a central
lander. Each rover consists of two tethered robots, which
connect to a common base. To fetch each cable, the robots
will detach, descend into the crater, attach to the cable, and
then ascend to the crater rim using the tether.

However, an important question remains: which cables
should be assigned to each rover? Since lunar regolith is
abrasive and can easily damage sensitive equipment (such as
sensors and actuators essential to basic rover functions), in
order to minimize mission risk, we want to find assembly se-
quences which minimize the total makespan of the telescope.
This is difficult for two reasons. First, assembly sequencing is
a combinatorial optimization, which is computationally diffi-
cult and scales poorly in the number of agents. Second, the
parameters of our assembly task (i.e., rover speeds) depend
on the lighting conditions of the crater, meaning the time
required to tow and anchor a cable depends on whether the
job is performed during lunar day or night, or if portions of
the route are in shadow.

In this paper, we pose the assembly sequencing problem as
a mixed-integer linear program, which can be solved effec-
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Figure 3: A team of five rovers (shown as dots) assemble the Lunar
Crater Radio Telescope (LCRT). Using our proposed scheduler,
we generate a minimum-time assembly sequence which assign lift
(black) and receiver (red) cables to each robot to be retreived from a
central lander and anchored on the crater rim. Our scheduler reasons
about lighting conditions, such as the partial shadowing seen in (c),
which greatly affect the rovers’ travel speeds.

tively using commercial solvers. To capture the illumination
effects mentioned previously we model the problem param-
eters as piecewise-linear functions of time, and demonstrate
how these parameters can be incorporated into the planning
problem. We also detail how the parameter values themselves
can be generated from real data for a specific LCRT construc-
tion scenario. See Figure [3|for a pictorial illustration of this
problem statement.

2. PRIOR WORK
Scheduling Problems

Scheduling problems are an important class of combinatorial
optimization problems which lie at the heart of operations
research, among other fields. While scheduling problems
are deeply important, they are also fundamentally difficult,
since such problems are N P-hard, i.e., at least as hard as
the hardest problems in /N P. Perhaps the canonical example
of such problems is the job shop problem [4], which seeks
to optimally schedule jobs in a machine shop to maximize
throughput.

The problem considered in this work is more closely related
to the Vehicle Routing Problem (VRP), a multi-vehicle gen-
eralization of the well-known Traveling Salesman Problem
(TSP) [5]I, [6]. The TSP is to find a single minimum-cost
tour (i.e. connected, cyclic path between all vertices) of an
undirected weighted graph; it remains a canonical example
of a combinatorial optimization. The VRP modifies the TSP
to seek a set of NV tours (for N different agents) which
together cover the graph. This variant has also been of deep
importance in the operations research community (see [7]], [8]
for a comprehensive survey).



The problem considered in this work is quite similar to the
time-dependent variation of the VRP, wherein the distances
between nodes depend on the time they are being traversed.
While numerous papers [9]], [[10], [11] have considered this
variant, most propose heuristic or meta-heuristic solutions
to the problem, whereas we pose it as an integer program
which can be solved exactly. Further, while most time-
varying VRPs model the travel times as step functions, or
introduce discrete variables to select “windows” for each job
to begin/end, we instead model the time-varying parameters
as piecewise-linear functions which can be modeled easily in
modern solvers. While the job times considered in this work
are deterministic, a number of authors [[12], [[13], [14] have
considered the stochastic VRP, which remains an interesting
direction for future work.

This work is also closely related to robotic assembly plan-
ning (see [15] for a survey), another class of combinatorial
problems which focuses on sequencing physically-feasible
assembly operations for a set of components. [[16] presents
a multi-robot variation of this problem, and shows it can
also be posed as a mixed-integer program. [17] presents a
method for multi-robot assembly which combines a high-
level A* search with a low-level conflict-based search [[18]]
to generate optimal assembly sequences. Our work is also
related to multi-robot path finding [[19]], [20]], although in this
work we do not focus on collisions between agents (since
the workspace is much larger than the rovers, allowing trivial
collision avoidance), and instead concentrate on minimizing
overall makespan.

Mixed-Integer Linear Programming

A fundamental tool leveraged in this work is mixed-integer
linear programming, a variant of linear programming which
requires a subset of the decision variables to take on integer
values. A mixed-integer linear program (MILP) is given by

min, , c’x+d’z
st. Ax+ Bz <0,
xeRYzeZP

where x are the continuous decision variables and z are
the integer decision variables. This class of problems is
quite powerful for modeling decision problems with discrete
or logical structure, and have been long-studied in the op-
timization community. They are commonly solved using
branch-and-bound or branch-and-cut techniques (see [3] for
an overview), as implemented in a number of open-source
and commercial solvers such as Gurobi [21]].

3. PROBLEM FORMULATION

In this paper, we consider the problem of minimum-time
multi-robot assembly sequencing for LCRT. Figure ] shows
a schematic of the proposed assembly site. A team of n
rovers will be used to retrieve, tow, and anchor cables from
the central lander. There are a total of m = m, + m,. wires,
where m, is the number of lift wires, and m,. is the number of
receiver wires. Each wire is to be anchored at a fixed radius
R from the crater center, with desired angles 61, ..., 6,,.

To model the realistic travel times of each robot, we model
their speeds as both lighting- and location-dependent. When
on the crater rim, each rover can move with a maximum speed

of v% in illuminated sections (i.e., during lunar day) and v

in darkness. Intuitively, we will have v? < o, since poor
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Figure 4: A schematic of the assembly planning problem studied in
this paper. A team of rovers are deployed from a base on the crater
rim, and fetch lift cables from a lander at the center of the crater.
Each rover must tow the cable along the crater wall, and anchor it
onto the rim. Rover travel speeds vary based on lighting conditions,
including shadowing within the crater.

lighting conditions will require more conservative movement.
The rovers also have speeds (vf;, v{ii) while descending along

the crater wall, and (v%, v%) when ascending while towing the
cable. We note here that some portions of the crater can be
shadowed during the lunar day, causing movement speeds to
be non-uniform within the crater at a given time.

To fully specify the problem, we must also provide data on
the crater’s dimensions and location, as well as the start time
of the planned assembly mission. To this end, we assume the
planner has access to a CAD model of the crater (in this work
we use a model generated from lunar survey data from the
Lunar Reconnaissance Orbiter) which can be used to compute
path lengths between anchor points and the crater center. The
CAD model is also required to compute lighting conditions
and shadowing over the course of assembly.

Using this data, our problem is to generate an assembly plan,
which is a map A from wire indices {1,...,m} to robots
{1,...,n}, and a pair of start times s; and end times f; for
each job. We require that each job duration f; — s; be at
least the time required to retrieve and anchor the cable, under
the time- and location-dependent rover speeds discussed pre-
viously. Jobs also must not overlap, meaning a rover must
complete a job and travel to the next anchor point before
starting another. We seek to minimize the makespan of the
telescope, which we define to be the time required for all jobs
to be completed, and all rovers to return to the base (so they
may be stored and protected from lunar conditions). Thus our
problem is given by

ming, s, 4 LCRT makespan (1
s.t. job durations,
travel times

The rest of the paper proceeds as follows. Section [ presents
a mathematical model for our optimization (I)), which cap-
tures the time-varying travel and job times at the core of
our problem. Section [3] details how we generate the prob-
lem parameters for the optimization using the physical data
provided. Section [§] studies how our method performs on
a specific LCRT construction scenario, including how the
makespan varies with the number of robots n. We conclude
in Section [/] with a brief discussion of the method and some
next directions for future work.



4. MATHEMATICAL MODEL

Here we present the mathematical form of our assembly
sequence optimization (I). We model the problem as a
mixed-integer linear program (MILP), a common form for
scheduling problems. To do so, we introduce two sets of

variables, z € {0,1}"""*"™  which are binary variables with
z;, = 1if job j precedes job k for worker ¢, and t € Rrxm

where t; is the start time of job j on worker .

Time-Invariant Form

To begin, we formulate our problem in the case of time-
invariant parameters before generalizing to the full problem.
For the time-invariant problem, we consider a set of m jobs
which have duration d;. Each job will be assigned to exactly
one robot, with a fixed travel time §; ;, required to move from
job j to job k. We also include ¢ ; and 0 for j = 1,...m,
which are the travel times from and to the depot, respectively,
for each job.

The time-invariant optimization is given by:

min C
st. C>th+dj+ 050 Vi,i (2
Zig = U 2t +dj+ 05 Vi, gk (3)
—zh =t > 1+ di + Ok Vi, k (@)
Yinde=1 Vi ()
t5 > do 5 Vi (6

We now discuss the constraints in more detail. Equation (2)
requires the objective C' to be lower-bounded by the termi-
nation time of all jobs. Specifically, the objective must be
greater than the start time of all jobs, plus their duration, plus
the time required to return to the depot. The constraints (3),
define the ordering of the jobs, where we use = to denote
an implication constraint (i.e., the constraint is imposed when
the logical condition evaluates to true). If z; x = 1, then the

start of job k on worker ¢ must be greater than the start time
of job j, plus the duration of job j and travel time from j to
k. Equation (@) imposes the logical inverse. The constraint
() enforces completeness, i.e., that all jobs are assigned to
exactly one worker. Finally, (6)) requires the start time of each
job must be greater than the time required to travel to it from
the depot.

Piecewise-Linear Modeling

We now discuss how to integrate time-varying problem data
into our formulation. We seek to model the job durations
and travel times as piecewise-linear (PWL) functions of time.
For example, let us consider a generic PWL function d =
f(t) defined by points (¢1,d1), ..., (tn,dn). We define the
function as

di, t<t,
F) = di+ (= t) P25, ti<t<ti, ()
dy, t>1tN.

Thus, we seek a way to express our problem data as PWL
functions. To do so, we will use the concept of Special
Ordered Sets (SOS) [22[], a common tool for handling PWL
modeling in MILPs. These sets have two varieties; we say

a vector x € RN is in SOS(1) if only one of the entries x;

is non-zero. Further, we say x is in SOS(2) if all entries
x; are non-negative, at most two entries are non-zero, and
these entries are adjacent. Support for SOS constraints is
commonly included in MILP solver routines, such as Gurobi
[21]], which we use to generate the results presented in Section

Thus, suppose in our problem we have variables ¢, d which
we seek to constrain such that d = f(t), where f is the
PWL function given above. To impose this constraint,

we introduce an additional set of decision variables A € RY s
with constraints

N

Y oimq Aiti =1t
N

Y oimq Aidi = d,

Zil\il )‘l =1,
>\i Z Oa
A € SOS(2)

In short, we can interpret the \; as interpolation weights
between adjacent knot points (¢;, d;); the SOS(2) constraint
is key to ensuring the function is interpolated only between
adjacent points, rather than across all knot points.

Time-Varying Formulation

Using this technique, we can now introduce time-varying
problem data into our formulation. To do this, we introduce a
set of T knot points 6 = [t1, ... ,tT]T € RT, at which the job
durations and travel times will be computed. Let D; € R”

denote the vector of durations for job j, and A € R”
denote the vector of transfer times between jobs j and k.

We also introduce two sets of non-negative variables, A &€
R™™*T " which are interpolation weights for the job start

times, and v € R™™*T which are weights for the job
completion times. To conform to the PWL modeling, we
impose

Z?:l Zthl )‘;’,t =1 vj ®)
Y =1 Vi O
A’ . € SOS(2) Vi,j  (10)
¥j.1.r € SOS(2) Vi,j o (11)

Finally, to incorporate the time-varying problem data, we
will make d, § real-valued decision variables, and impose the
constraints

Sy Nyl =t Vij o (12)
S Sy Al ydy = d Vi (13)

DDHID DAREL .Sy I Vik  (14)
S A (O + Dj) = Yoy i 0 Vijo (19)
DOHREITED PHRPLY Vi,j  (16)
ST Ak € 808(1) Vi (A7)
o1 v € S0S(1) vi o (18)

Here the constraints (12))-(14) require A to represent the job
start time, and impose the interpolation scheme discussed



previously for both job and travel times. Further, the con-
straint requires the job completion time (on the RHS) to
equal the start time of the job, plus its duration. With (16)
we impose that jobs may have non-trivial final times iff they
have non-trivial start times on the same agent. We note that
the final two constraints, (I7), (I8)), require the interpolation
weights to have non-zero entries for only one agent per job,
i.e., that each job is assigned to exactly one agent.

Thus, our full optimization problem is given by the con-
straints (2)-(6) and (8)-(I8). Since z is a set of binary
variables, but all constraints and the objective are linear in the
decision variables, the problem is indeed a MILP, for which
efficient commercial solvers exist.

Implementation Details

We implement our problem in Gurobi [21]], a commercial
mixed-integer programming solver, using JuMP [23]], a mod-
eling package written in Julia. While the formulation de-
scribed above is correct (i.e., optimal solutions solve the
problem described in Section [3)), we found empirically that
performance could be improved by adding redundant inequal-
ities to our formulation.

Specifically, we introduce a final intermediate variable ¢ €
R nxmxmXT and constrain

> ="k Vit (19)
k=1
We also impose the typical PWL constraints on ¢, requiring
0<Ch: <1,
S Eimt Game € SOS(1) v,
527 Xt Chan e € SOS(1) vk,

Cji',k:,lzT € SOS(Q) Vimja k
By introducing these intermediate variables, we can now
capture when each robot transfers between specific jobs,

allowing us to impose the (redundant) inequality constraints

Z;‘n=1 Zthl (Aé‘,tDj,t + Z?:l g,mAJ}k,t) <C Vi
(20)

Empirically, we found these strengthening inequalities
greatly improved the lower bound used by the solver, since
the LP relaxation of the original problem typically had an
optimal objective of zero.

5. PARAMETER GENERATION

We now turn to the problem of generating the problem data
used in our MILP formulation from the more abstract prob-
lem specification described in Section While our MILP
formulation generates a schedule from job durations and
travel times, our problem specification only includes a layout
for the telescope and crater, a start time for the assembly
process, and lighting-dependent speeds for the rovers. Thus,
we need to compute both job durations (i.e., how much time
is required to descend into the crater, retrieve the wire, and
anchor it to the crater rim) and travel times between anchor
locations. Since these times vary based on the time of day,
we will compute them at a fixed set of knot points, and then
approximate the true, continuous times as piecewise-linear
interpolations between these knot points.

Anchor Points with Crater
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Figure 5: Isometric view of the prospective LCRT crater, with
anchor points plotted. We use a “heat method” to reason about
distances between the points and the crater center, which must be
measured along the (curved) crater surface, instead of a straight line.

Illumination Computation

Our first problem is to compute the illumination of various
points of the crater as a function of time. As mentioned in
Section 3] we define starting time for the assembly operation
as well as the location (latitude, longitude) of the crater on the
Moon. Using this data, we can use the SPICE system [24]
to compute the exact position and orientation of the crater
with respect to the sun. This allows us to compute a relative
direction of the sun from the crater normal, which we assume
points outward along the ray from the moon’s center to the
crater center.

In this work, we use a coarse illumination model, treating the
sun as a directional light source (i.e., a point light at an infinite
distance, with all light rays aligned along a single direction).
Thus, we say a point on the crater is illuminated if the ray
from the point to the sun does not intersect the moon, which
would cause the point to be shadowed. Note this neglects
variations in light intensity which would arise from reflection
and scattering; we believe this coarse lighting model is a good
first step for reasoning about navigability.

To implement this illumination model in software, we use
the software package trimesh [25]] to compute ray-mesh
intersections for each point of interest along the ray pointing
toward the sun, as generated by SPICE.

Distance Measurement

Further, while our problem specification includes lighting-
dependent speeds for the rovers, we still must compute
relative distances between the anchor points and the crater
center to compute travel time (both along the rim, and into
the crater). While the distance between anchor points can
be easily approximated by the length of a planar arc con-
necting them, measuring distance to the crater center is more
challenging. Because the rovers must travel along the crater
surface, which is curved as shown in Figure[5] when descend-
ing into the crater, they will travel a farther distance than
simply the Euclidean (or “straight-line”) distance between the
anchor points and crater center. Thus, we seek to measure the
“geodesic distance” (see [26] for a more formal discussion)
along the crater surface.

This is a common problem in computational geometry, and
there exist fast solvers for measuring geodesic distance on
triangle meshes. In particular, for this work we use the



“heat method” [27]], as implemented in the Python package
potpourri3d [28]. The heat method uses fast finite-
element method to compute geodesic distances along the
crater surface, which allows us to generate accurate travel
times both along the crater rim and along its walls.

Travel Time Computation

Now, since we can compute illumination of and distance
between points on the crater, and since we are given
illumination-dependent rover velocities, we should be able to
compute the travel time between points.

However, one issue remains: the illumination of points can
vary along the path, both as time passes and the rover’s
location changes (e.g., moving into shadow as it descends into
the crater). Thus, the rover’s velocity is non-constant along
the path, which makes the typical travel time computation
At = % inaccurate, where d is the distance traveled, v is
the (constant) velocity along the path.

Instead, the rover’s position (along the path from its origin
to its destination) is governed by a non-autonomous ordinary
differential equation (ODE),

dz vt I(x,t) =1,
dt v(z,t) = {vd, otherwise.

where Z(x,t) is an indicator function for if the point z is

illuminated at time ¢, v* is the velocity of the rover in full
illumination, and vy is the rover velocity in darkness.

2y

Thus, our problem is to solve for ¢y such that

tr
/ v(x, t)dt = d,
0

where d is the distance traveled.

To solve this, we use a technique common in optimal control
[29] called “time rescaling.” We introduce a scaled time 7,
with ¢ = a7, where we define z(7 = 0) = 0, and z(7 =
1) = d, and o > 0 is the final time ¢ .

We can now change variables in our ODE, yielding

dr dxdt ( )

— = —— =v(z,a1)a.

dr  dtdr ’
By introducing this scaled time, we can now treat the scal-
ing factor o as a state in our ODE, with trivial dynamics

da — (). Thus, we now have a two-point boundary value

problem (2PBVP) in z, o, which we can solve with numerical
routines.

Thus, to generate the drive times between points, we solve a
2PBVP, with velocities generated by the illumination check-
ing procedure proposed previously. Practically, we sam-
ple a fixed number of points along each path, and a fixed
number of timesteps at which we compute the illumination,
and perform multilinear interpolation (in both position and
time) to approximate illumination values. Computing the
rim travel times is straightforward using this procedure; for
job durations, we compute two 2PBVP solutions (one for
descent, another for ascent), and add a constant factor to
capture time required to grasp the cable at the lander, and
to anchor it at the rim.

parameter value

M, 16

M, 4

vl 1x107' m/s
vd 5x 1072 m/s
vh, vl 2x 1072 m/s
vg, vg 1x1072m/s
R 2.5 x 10> m

Table 1: Parameter Values for LCRT Construction Scenario
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Figure 6: Planned assembly schedule with n = 5 agents. Each
colored bar shows the start time and duration of a specific wire being
anchored. The background is shaded according to the lighting of the
crater; lunar night is shown with a dark background.

6. RESULTS

We now present numerical results demonstrating our assem-
bly planner on an example LCRT design. Here we plan
an assembly sequence for a telescope with m, = 16 lift
wires and m,. = 4 receiver wires, constructed within a 3km-
diameter crater selected as a candidate by the LCRT team.
Table (1] lists the parameter values used in the simulation,
including velocity values for the rovers. To optimize all
schedules, we allow the MILP solver to run for at most 10
minutes before returning the best feasible solution.

Figure [6] plots an example schedule sequenced for a team
of n = b5 rovers. We can see the proposed schedule does
not include any overlapping jobs between agents, and that
the jobs that occur partially during lunar night have longer
durations, as expected. We can also note that the end times
of jobs all roughly align; further, the rovers (4 & 5) which
seemingly end early perform jobs at wires located far from
the depot (coincident with anchor 1). Thus, the optimized
schedule is able to balance workloads effectively across all
agents.

We further studied how the LCRT makespan returned by our
solver varied with the number of rovers; this is an important
data point for mission design, since additional rovers yield
shorter makespans (and thus lower mission risk), but increase
the mission cost. For this case study, we considered LCRT



LCRT Makespan vs. Number of Robots
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Figure 7: Optimized LCRT makespan plotted for the number of
agents n varying between 1 and 10 and a variety of LCRT designs.
We can see diminishing returns to the number of agents, with larger
marginal speedups when n is small, as expected. Lunar night is
represented by the shaded horizontal bars on the plot; teams with
n > 8 can complete construction for all designs over the course of a
single lunar day.

designs with m;, = {12,16,20} lift wires and m, = 4
receiver wires. Figure [/] plots the makespan for n varying
between 1 and 10. We can observe diminishing returns to
the number of agents, with larger marginal speedups (i.e.,
speedups from adding one extra rover) when n is small. We
can also observe that when n > 8 the makespan is less
than a single lunar day for all designs, meaning the team can
complete LCRT in full sunlight. This is an important design
point, since it means the assembly robots may not need to be
designed to survive lunar night. As expected, the makespan
increases with the number of wires for small teams, although
the makespan converges to similar values as the number of
robots grow, since the team can perform tasks in parallel.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a method for multi-robot
assembly sequencing for the LCRT. We posed the scheduling
problem as a mixed-integer linear program, and demonstrated
how to include time-varying data in the problem formulation,
by modeling job durations an travel times as piecewise-linear
functions of time. We also provided an overview of how
to generate this timing data from the realistic data (e.g.,
crater location and mesh, desired LCRT layout) provided as
part of the design specification. Finally, we presented some
numerical results of running our solver with some realistic
parameter values, and observed that the assembly sequences
returned were indeed reasonable, and observed diminishing
returns in the number of agents n, as expected.

There exist numerous directions for future work. Perhaps
the most compelling is finding ways to model stochastic
job times and uncertainty in the planning problem. While
in this work we considered the job and travel times to be
deterministic, and known a priori, the real world is uncer-
tain and unpredictable. There has been extensive work on
stochastic vehicle routing [13]], [12] which could provide
interesting ways forward on reasoning rigorously about un-
certainty inherent in the problem, such as modeling stops
by robots when they cannot plan paths forward and require
human assistance. Other interesting directions would include
tighter formulations of the MILP; we typically terminate
the solver before it returns a certificate of optimality for
the schedule. Perhaps tighter formulations exist that would

speed performance, and allow for replanning or solutions
on resource-limited computers. Finally, we are interested in
performing higher-fidelity simulation of the assembly task in
order to verify our modeling assumptions (especially that our
interpolation schemes are appropriate).
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